期刊文献+
共找到4,682篇文章
< 1 2 235 >
每页显示 20 50 100
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model
1
作者 Lijuan Zheng Yonghao Li +5 位作者 Zhuangzhuang Sun Yangquan Luo Ying Xu Jun Wang Chengyong Wang Xin Wei 《Chinese Journal of Mechanical Engineering》 2025年第3期1-11,共11页
The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliab... The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliability,and insufficient measurement stability.Micro-CT enables the observation of the internal structures of the sample without the need for slicing,thereby presenting a promising new method for assessing the quality of microholes in PCBs.This study integrates computer vision technology with computed tomography(CT)to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms.This study established an unplated copper PCB CT image dataset and trained an improved U-Net model.Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images.Subsequently,the roughness of the holes’walls was assessed using a customized image-processing algorithm.Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection,yielding range and average errors of 2.92 and 1.64μm,respectively.Hence,the detection method proposed in this paper offers a novel approach for nondestructive testing of hole wall roughness in the PCB industry. 展开更多
关键词 PCB CT image segmentation improved u-net model Hole wall roughness Micro-CT non-destructive testing
在线阅读 下载PDF
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
2
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
CT Image Segmentation Method of Composite Material Based on Improved Watershed Algorithm and U-Net Neural Network Model 被引量:1
3
作者 薛永波 刘钊 +1 位作者 李泽阳 朱平 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期783-792,共10页
In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectiv... In the study of the composite materials performance,X-ray computed tomography(XCT)scanning has always been one of the important measures to detect the internal structures.CT image segmentation technology will effectively improve the accuracy of the subsequent material feature extraction process,which is of great significance to the study of material performance.This study focuses on the low accuracy problem of image segmentation caused by fiber cross-section adhesion in composite CT images.In the core layer area,area validity is evaluated by morphological indicator and an iterative segmentation strategy is proposed based on the watershed algorithm.In the transition layer area,a U-net neural network model trained by using artificial labels is applied to the prediction of segmentation result.Furthermore,a CT image segmentation method for fiber composite materials based on the improved watershed algorithm and the U-net model is proposed.It is verified by experiments that the method has good adaptability and effectiveness to the CT image segmentation problem of composite materials,and the accuracy of segmentation is significantly improved in comparison with the original method,which ensures the accuracy and robustness of the subsequent fiber feature extraction process. 展开更多
关键词 image segmentation composite material segmentation of adhered objects watershed algorithm u-net neural network
原文传递
Study of a New Improved PSO-BP Neural Network Algorithm 被引量:7
4
作者 Li Zhang Jia-Qiang Zhao +1 位作者 Xu-Nan Zhang Sen-Lin Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期106-112,共7页
In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based ... In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based on adaptive particle swarm optimization( PSO) algorithm. This algorithm adjusted the inertia weight coefficients and learning factors adaptively and therefore could be used to optimize the weights in the BP network. After establishing the improved PSO-BP( IPSO-BP) model,it was applied to solve fault diagnosis of rolling bearing. Wavelet denoising was selected to reduce the noise of the original vibration signals,and based on these vibration signals a wide set of features were used as the inputs in the neural network models. We demonstrate the effectiveness of the proposed approach by comparing with the traditional BP,PSO-BP and linear PSO-BP( LPSO-BP) algorithms. The experimental results show that IPSO-BP network outperforms other algorithms with faster convergence speed,lower errors,higher diagnostic accuracy and learning ability. 展开更多
关键词 improved particle swarm optimization inertia weight learning factor BP neural network rolling bearings
在线阅读 下载PDF
Application of Improved PSO-LSSVM on Network Threat Detection 被引量:4
5
作者 QI Fumin XIE Xiaoyao JING Fengxuan 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期418-426,共9页
To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO alg... To solve the problem of the design of classifier in network threat detection, we conduct a simulation experiment for the parameters’ optimal on least squares support vector machine (LSSVM) using the classic PSO algorithm, and the experiment shows that uneven distribution of the initial particle swarm exerts a great impact on the results of LSSVM algorithm’s classification. This article proposes an improved PSO-LSSVM algorithm based on Divide-and-Conquer (DCPSO- LSSVM) to split the optimal domain where the parameters of LSSVM are in. It can achieve the purpose of distributing the initial particles uniformly. And using the idea of Divide-and-Conquer, it can split a big problem into multiple sub-problems, thus, completing problems’ modularization Meanwhile, this paper introduces variation factors to make the particles escape from the local optimum. The results of experiment prove that DCPSO-LSSVM has better effect on classification of network threat detection compared with SVM and classic PSOLSSVM. 展开更多
关键词 DIVIDE-AND-CONQUER least squares support vector machine (LSSVM) improved PSO CLASSIFICATION network threat detection
原文传递
Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network 被引量:6
6
作者 孙玉山 李岳明 +2 位作者 张国成 张英浩 吴海波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期808-816,共9页
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr... Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective. 展开更多
关键词 autonomous underwater vehicle fault diagnosis THRUSTER improved Elman neural network
在线阅读 下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
7
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
在线阅读 下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:39
8
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 improved PSO algorithm BP neural network Coal mine safety production Early warning
在线阅读 下载PDF
An Influence Maximization Algorithm Based on Improved K-Shell in Temporal Social Networks 被引量:3
9
作者 Wenlong Zhu Yu Miao +2 位作者 Shuangshuang Yang Zuozheng Lian Lianhe Cui 《Computers, Materials & Continua》 SCIE EI 2023年第5期3111-3131,共21页
Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT ... Influence maximization of temporal social networks(IMT)is a problem that aims to find the most influential set of nodes in the temporal network so that their information can be the most widely spread.To solve the IMT problem,we propose an influence maximization algorithm based on an improved K-shell method,namely improved K-shell in temporal social networks(KT).The algorithm takes into account the global and local structures of temporal social networks.First,to obtain the kernel value Ks of each node,in the global scope,it layers the network according to the temporal characteristic of nodes by improving the K-shell method.Then,in the local scope,the calculation method of comprehensive degree is proposed to weigh the influence of nodes.Finally,the node with the highest comprehensive degree in each core layer is selected as the seed.However,the seed selection strategy of KT can easily lose some influential nodes.Thus,by optimizing the seed selection strategy,this paper proposes an efficient heuristic algorithm called improved K-shell in temporal social networks for influence maximization(KTIM).According to the hierarchical distribution of cores,the algorithm adds nodes near the central core to the candidate seed set.It then searches for seeds in the candidate seed set according to the comprehensive degree.Experiments showthatKTIMis close to the best performing improved method for influence maximization of temporal graph(IMIT)algorithm in terms of effectiveness,but runs at least an order of magnitude faster than it.Therefore,considering the effectiveness and efficiency simultaneously in temporal social networks,the KTIM algorithm works better than other baseline algorithms. 展开更多
关键词 Temporal social network influence maximization improved K-shell comprehensive degree
在线阅读 下载PDF
Detection of Precipitation Cloud over the Tibet Based on the Improved U-Net 被引量:2
10
作者 Runzhe Tao Yonghong Zhang +2 位作者 Lihua Wang Pengyan Cai Haowen Tan 《Computers, Materials & Continua》 SCIE EI 2020年第12期2455-2474,共20页
Aiming at the problem of radar base and ground observation stations on the Tibet is sparsely distributed and cannot achieve large-scale precipitation monitoring.U-Net,an advanced machine learning(ML)method,is used to ... Aiming at the problem of radar base and ground observation stations on the Tibet is sparsely distributed and cannot achieve large-scale precipitation monitoring.U-Net,an advanced machine learning(ML)method,is used to develop a robust and rapid algorithm for precipitating cloud detection based on the new-generation geostationary satellite of FengYun-4A(FY-4A).First,in this algorithm,the real-time multi-band infrared brightness temperature from FY-4A combined with the data of Digital Elevation Model(DEM)has been used as predictor variables for our model.Second,the efficiency of the feature was improved by changing the traditional convolution layer serial connection method of U-Net to residual mapping.Then,in order to solve the problem of the network that would produce semantic differences when directly concentrated with low-level and high-level features,we use dense skip pathways to reuse feature maps of different layers as inputs for concatenate neural networks feature layers from different depths.Finally,according to the characteristics of precipitation clouds,the pooling layer of U-Net was replaced by a convolution operation to realize the detection of small precipitation clouds.It was experimentally concluded that the Pixel Accuracy(PA)and Mean Intersection over Union(MIoU)of the improved U-Net on the test set could reach 0.916 and 0.928,the detection of precipitation clouds over Tibet were well actualized. 展开更多
关键词 u-net fy-4a precipitation cloud dense skip connections residual network
在线阅读 下载PDF
Classification of Infrared Monitor Images of Coal Using an Feature Texture Statistics and Improved BP Network 被引量:2
11
作者 SUN Ji-ping CHEN Wei +3 位作者 MA Feng-ying WANG Fu-zeng TANG Liang LIU Yan-jie 《Journal of China University of Mining and Technology》 EI 2007年第4期489-493,共5页
It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the ro... It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine. Texture statistics from the grey level dependence matrix were selected as the criterion for classification. The distributions of the texture statistics were calculated and analysed. A normalizing function was added to the front end of the BP network with one hidden layer. An additional classification layer is joined behind the linear layer. The recognition of pulverized from block coal images was tested using the improved BP network. The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image. The innovative improved BP network can then recognize the pulverized and block coal images. 展开更多
关键词 pulverized-coal-image block-coal-image gray level dependence matrix improved BP networks
在线阅读 下载PDF
An extended improved global structure model for influential node identification in complex networks 被引量:1
12
作者 Jing-Cheng Zhu Lun-Wen Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期772-781,共10页
Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different a... Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses.Many classical approaches have been proposed by researchers regarding different aspects.To explore the impact of location information in depth,this paper proposes an improved global structure model to characterize the influence of nodes.The method considers both the node’s self-information and the role of the location information of neighboring nodes.First,degree centrality of each node is calculated,and then degree value of each node is used to represent self-influence,and degree values of the neighbor layer nodes are divided by the power of the path length,which is path attenuation used to represent global influence.Finally,an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes.In this paper,the propagation process of a real network is obtained by simulation with the SIR model,and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy.The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks. 展开更多
关键词 complex network influential nodes extended improved global structure model SIR model
原文传递
Improved Medical Image Segmentation Model Based on 3D U-Net 被引量:2
13
作者 LIN Wei FAN Hong +3 位作者 HU Chenxi YANG Yi YU Suping NI Lin 《Journal of Donghua University(English Edition)》 CAS 2022年第4期311-316,共6页
With the widespread application of deep learning in the field of computer vision,gradually allowing medical image technology to assist doctors in making diagnoses has great practical and research significance.Aiming a... With the widespread application of deep learning in the field of computer vision,gradually allowing medical image technology to assist doctors in making diagnoses has great practical and research significance.Aiming at the shortcomings of the traditional U-Net model in 3D spatial information extraction,model over-fitting,and low degree of semantic information fusion,an improved medical image segmentation model has been used to achieve more accurate segmentation of medical images.In this model,we make full use of the residual network(ResNet)to solve the over-fitting problem.In order to process and aggregate data at different scales,the inception network is used instead of the traditional convolutional layer,and the dilated convolution is used to increase the receptive field.The conditional random field(CRF)can complete the contour refinement work.Compared with the traditional 3D U-Net network,the segmentation accuracy of the improved liver and tumor images increases by 2.89%and 7.66%,respectively.As a part of the image processing process,the method in this paper not only can be used for medical image segmentation,but also can lay the foundation for subsequent image 3D reconstruction work. 展开更多
关键词 medical image segmentation 3D u-net residual network(ResNet) inception model conditional random field(CRF)
在线阅读 下载PDF
Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network 被引量:1
14
作者 Rajalakshmi Shenbaga Moorthy P.Pabitha 《Computers, Materials & Continua》 SCIE EI 2021年第9期3101-3119,共19页
Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mecha... Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error. 展开更多
关键词 improved radial basis function neural network K-MEANS particle swarm optimization
在线阅读 下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
15
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
在线阅读 下载PDF
Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods
16
作者 Wei Chen Xin Gao +2 位作者 Zhanhong Wei Xusheng Yang Zhao Li 《Energy Engineering》 2025年第2期805-821,共17页
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta... This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance. 展开更多
关键词 DC microgrid BIFURCATION small-world network voltage synchronization improved adaptive control
在线阅读 下载PDF
Improved lightweight road damage detection based on YOLOv5
17
作者 LIU Chang SUN Yu +2 位作者 CHEN Jin YANG Jing WANG Fengchao 《Optoelectronics Letters》 2025年第5期314-320,共7页
There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilize... There is a problem of real-time detection difficulty in road surface damage detection. This paper proposes an improved lightweight model based on you only look once version 5(YOLOv5). Firstly, this paper fully utilized the convolutional neural network(CNN) + ghosting bottleneck(G_bneck) architecture to reduce redundant feature maps. Afterwards, we upgraded the original upsampling algorithm to content-aware reassembly of features(CARAFE) and increased the receptive field. Finally, we replaced the spatial pyramid pooling fast(SPPF) module with the basic receptive field block(Basic RFB) pooling module and added dilated convolution. After comparative experiments, we can see that the number of parameters and model size of the improved algorithm in this paper have been reduced by nearly half compared to the YOLOv5s. The frame rate per second(FPS) has been increased by 3.25 times. The mean average precision(m AP@0.5: 0.95) has increased by 8%—17% compared to other lightweight algorithms. 展开更多
关键词 road surface damage detection convolutional neural network feature maps convolutional neural network cnn lightweight model yolov improved lightweight model spatial pyram
原文传递
A NEW RETROFIT APPROACH FOR HEAT EXCHANGER NETWORKS—IMPROVED GENETIC ALGORITHM
18
作者 王克峰 姚平经 +2 位作者 袁一 于福东 施光燕 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第4期65-76,共12页
Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state ... Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion. 展开更多
关键词 HEAT EXCHANGER network FLEXIBILITY analysis and RETROFIT improved GENETIC algorithm
在线阅读 下载PDF
Improved Bat Algorithm Based Energy Efficient Congestion Control Scheme for Wireless Sensor Networks 被引量:1
19
作者 Mukhdeep Singh Manshahia Mayank Dave Satya Bir Singh 《Wireless Sensor Network》 2016年第11期229-241,共14页
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between... Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization). 展开更多
关键词 improved Bat Algorithm Congestion Control Wireless Sensor networks
在线阅读 下载PDF
Wake field prediction of a wind farm based on a physics-informed neural network with different spatiotemporal prediction performance improvement strategies
20
作者 Junyong Song Lei Wang +1 位作者 Zhiqiang Xin Hao Wang 《Theoretical & Applied Mechanics Letters》 2025年第2期141-153,共13页
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo... Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms. 展开更多
关键词 Dynamic wake prediction LiDAR measurements Physics-informed neural network Accuracy improvement strategy Step-by-step time saving strategy
在线阅读 下载PDF
上一页 1 2 235 下一页 到第
使用帮助 返回顶部