针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板...针对邮轮推舱序列自动规划问题,采用投影法建立推舱路径规划模型,并提出一种基于改进双向快速搜索随机树(Bidirectional Rapidly-Exploring Random Tree,Bi-RRT)算法嵌入的贪心算法进行邮轮推舱序列规划的方法。以大型邮轮H1508船甲板中段区域为例,在Unity3D软件中对预制模块化舱室单元(Pre-fabricated Modular Cabin Unit,PMCU)的推舱序列规划进行仿真试验。试验结果表明,该方法可兼顾避障验证与序列规划,比传统蛇形推舱序列规划具有更高的效率。展开更多
针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强...针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。展开更多
RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范...RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。展开更多
针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点...针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点分布均匀性好的Halton序列进行采样,并利用候选点集策略对节点进行筛选,以剔除冗余节点;同时该算法采用改进的Dijkstra算法提取原始路径关键节点,以减少路径冗余路段;在此基础上采用3次B样条曲线对路径作平滑处理.经Matlab联合ROS系统仿真结果表明,HDRRT算法相对于Bias-RRT和标准RRT算法具有快速性,稳定规划出最短以及平滑路径等优点.展开更多
为解决传统方法在铁路变配电所敷设施工时完全依靠二维设计布线图纸,易发生扭绞、交叉以及浪费物料等问题,基于建筑信息模型(BIM,Building Information Modeling)技术对铁路变配电所的线缆敷设进行优化。利用改进的快速扩展随机树(RRT*,...为解决传统方法在铁路变配电所敷设施工时完全依靠二维设计布线图纸,易发生扭绞、交叉以及浪费物料等问题,基于建筑信息模型(BIM,Building Information Modeling)技术对铁路变配电所的线缆敷设进行优化。利用改进的快速扩展随机树(RRT*,Rapidly Exploring Random Tree*)算法,在三维视图下进行智能布线,解决了线缆布放规划复杂,工艺要求高,施工工艺难以掌握等问题,避免了施工过程中扭绞等问题的发生,同时实现了布线路径最优化。此外,还可以三维动画的形式对整个线缆敷设过程进行模拟和演示,并生成包含路由、长度、规格型号的线缆清单,显著提高了施工效率和工艺质量。展开更多
文摘针对六自由度工业机器人在复杂的分拣环境中分拣速度慢、避障效果差等问题,提出了一种融合人工势场(Artificial Potential Field,APF)算法的快速扩展随机树(Rapidly-exploring Random Tree,RRT)改进算法。传统RRT算法路径规划随机性强、收敛速度慢,在该算法中引入APF机制引导其向目标点进行有效扩展,减少路径搜索过程中的无效分支,提高搜索效率;优化对父系节点的选择策略,对原路径局部节点进行优化重连,提高路径质量及平滑性。根据实际分拣中可能出现的状况,在MATLAB软件中建立了3个不同的仿真场景,并将所提出的改进APF-RRT算法与传统RRT算法、APF-RRT算法进行对比仿真实验。结果表明,改进APF-RRT算法于不同分拣环境中,在路径长度、搜索时间、节点个数和迭代次数4个指标上均有一定提升,能以更高的效率搜索到更高质量的路径。
文摘RRT(rapidly exploring random tree)算法是一种基于采样的路径规划算法,可以在高维环境中搜索出一条路径。传统的RRT算法存在节点利用率低、计算量偏大的问题。针对这些问题,基于快速RRT*(Quick-RRT*)算法,通过优化重选父节点与剪枝范围策略、改进采样方式、引入自适应步长,对快速RRT*算法进行改进,使得算法耗时和路径长度更短。同时,加入节点连接筛选策略,消除路径中过大的转弯角。实验结果表明,改进后的算法在三维环境下能快速找到一条距离最短的无碰撞路径,且运行时间也大幅降低。
文摘针对标准快速扩展随机树(RRT)算法采用伪随机序列导致采样点分布不均、不合理,且移动机器人从起始点到目标点路径有冗余路段及冗余节点的问题,提出HDRRT(halton&dijkstra&rapidly exploring random tree)算法,该算法采用采样点分布均匀性好的Halton序列进行采样,并利用候选点集策略对节点进行筛选,以剔除冗余节点;同时该算法采用改进的Dijkstra算法提取原始路径关键节点,以减少路径冗余路段;在此基础上采用3次B样条曲线对路径作平滑处理.经Matlab联合ROS系统仿真结果表明,HDRRT算法相对于Bias-RRT和标准RRT算法具有快速性,稳定规划出最短以及平滑路径等优点.
文摘为解决传统方法在铁路变配电所敷设施工时完全依靠二维设计布线图纸,易发生扭绞、交叉以及浪费物料等问题,基于建筑信息模型(BIM,Building Information Modeling)技术对铁路变配电所的线缆敷设进行优化。利用改进的快速扩展随机树(RRT*,Rapidly Exploring Random Tree*)算法,在三维视图下进行智能布线,解决了线缆布放规划复杂,工艺要求高,施工工艺难以掌握等问题,避免了施工过程中扭绞等问题的发生,同时实现了布线路径最优化。此外,还可以三维动画的形式对整个线缆敷设过程进行模拟和演示,并生成包含路由、长度、规格型号的线缆清单,显著提高了施工效率和工艺质量。