期刊文献+
共找到11,307篇文章
< 1 2 250 >
每页显示 20 50 100
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
1
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning improved A^(*)algorithm
在线阅读 下载PDF
Path Planning for Robotic Arms Based on an Improved RRT Algorithm 被引量:2
2
作者 Wei Liu Zhennan Huang +1 位作者 Yingpeng Qu Long Chen 《Open Journal of Applied Sciences》 2024年第5期1214-1236,共23页
The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operationa... The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning. 展开更多
关键词 Robotic Arm Path Planning rrt algorithm Adaptive Pruning Optimization
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
3
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Optimization design of launch window for large-scale constellation using improved genetic algorithm
4
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Deep Learning Mixed Hyper-Parameter Optimization Based on Improved Cuckoo Search Algorithm
5
作者 TONG Yu CHEN Rong HU Biling 《Wuhan University Journal of Natural Sciences》 2025年第2期195-204,共10页
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,... Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method. 展开更多
关键词 improved Cuckoo Search algorithm mixed hyper-parameter OPTIMIZATION deep learning
原文传递
Design of high phase-sensitivity BlueP/TMDC heterostructure-based SPR biosensor using improved artificial bee colony algorithm
6
作者 Chong Yue Mantong Chen +1 位作者 Yaopu Lang Qinggang Liu 《Nanotechnology and Precision Engineering》 2025年第2期113-122,共10页
This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structu... This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures. 展开更多
关键词 SPR Phase modulation Sensitivity improved artificial bee colony algorithm BlueP/TMDC HETEROSTRUCTURE
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
7
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
8
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
9
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm
10
作者 WANG Baomin DING Hewei +1 位作者 TENG Fei LIU Hongqin 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期309-318,共10页
Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose... Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage. 展开更多
关键词 conveyer belts with steel rope cores DAMAGE X-ray image image detection improved fully convo-lutional one-stage object detection(FCOS)algorithm
原文传递
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
11
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 rrt算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
改进Informed RRT^(*)算法移动机器人路径规划 被引量:2
12
作者 鲁宇明 周羽逵 +2 位作者 郭鑫 池吕庭 戴骏 《计算机工程与应用》 北大核心 2025年第8期283-293,共11页
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法... Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT^(*)算法和基于目标偏置的Informed RRT^(*)算法(Goal-bias-Informed RRT^(*))以及改进后的Informed RRT^(*)算法进行比较实验,实验结果验证了改进后Informed RRT^(*)算法的有效性和优越性及稳定性。该算法较Informed RRT^(*)算法和Goal-bias-Informed RRT^(*)效率更高、更容易得到初始解、更安全、更平滑、更稳定。 展开更多
关键词 移动机器人 路径规划 随机采样 Informed rrt^(*)算法 目标偏置 约束采样空间
在线阅读 下载PDF
基于改进RRT^(*)算法的无人机三维航迹规划
13
作者 陈明强 周子杨 +2 位作者 张勇 解靖涛 刘俊杰 《兵器装备工程学报》 北大核心 2025年第4期192-199,234,共9页
针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目... 针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目标点的引导搜索与环境的影响,将算法搜索过程中的采样范围约束在指向目标点的一定角度方向内,并根据环境动态调整方向,减少采样点的无效搜索;对障碍物引入人工势场法中的斥力场,根据斥力势能大小相应地改变步长长度,进一步提高搜索效率;对航迹过于冗长曲折的问题,进行剪枝优化与B样条曲线平滑处理以提高航迹的平滑性。通过Matlab仿真实验,验证了所提出的改进算法在不同环境中均能以较快的搜索速度得到更优的航迹。 展开更多
关键词 rrt^(*) 三维航迹规划 贪婪算法 斥力场 B样条曲线
在线阅读 下载PDF
基于GD-RRT-APF融合的机器人路径规划
14
作者 柴立平 马诗露 +1 位作者 朱利凯 李跃 《机械研究与应用》 2025年第2期174-178,共5页
文章提出一种目标导向下人工势场结合快速搜索树(GD-RRT-APF)的机器人路径规划算法,此算法在快速搜索树中添加目标导向启发,以减少搜索路径的随机扩展;同时结合人工势场目标点周围的势场分布优势,提升机器人路径规划的避障能力和路径最... 文章提出一种目标导向下人工势场结合快速搜索树(GD-RRT-APF)的机器人路径规划算法,此算法在快速搜索树中添加目标导向启发,以减少搜索路径的随机扩展;同时结合人工势场目标点周围的势场分布优势,提升机器人路径规划的避障能力和路径最优效果。仿真分析和实验验证表明,与传统RRT算法相比,该算法规划的路径更短,虽然耗时增加3.63 s,但计算效率更高。结果表明,该算法在有效避免碰撞的前提下,降低了传统RRT算法的随机性,能够快速生成平滑、短距离的路径,从而能更加高效地完成路径规划任务。 展开更多
关键词 rrt算法 APF算法 GD-rrt-APF融和算法 目标导向
在线阅读 下载PDF
面向改进RRT算法的全局路径规划研究
15
作者 李刚 李祥 +1 位作者 陈智欣 边子剑 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期1-9,共9页
针对RRT算法在采样过程中迭代次数和冗余节点多,以及最终路径不平滑等缺点,提出改进的RRT算法。通过父节点优化、冗余路径修剪,减少随机树的无效分枝,提高路径质量;引入斥力、引力分量和目标偏置策略,使采样点导向目标点,且使路径远离... 针对RRT算法在采样过程中迭代次数和冗余节点多,以及最终路径不平滑等缺点,提出改进的RRT算法。通过父节点优化、冗余路径修剪,减少随机树的无效分枝,提高路径质量;引入斥力、引力分量和目标偏置策略,使采样点导向目标点,且使路径远离障碍物,增加采样导向性,提高搜索效率;采用路径后处理策略,减少路径冗余节点,缩短路径长度,使路径更平滑,满足车辆运动学约束;将改进RRT算法与RRT算法、RRT^(*)算法和现存改进RRT算法进行仿真。结果表明:该算法的性能指标(路径长度、节点个数、仿真时间和迭代次数)均有显著优化,且可更快、更稳定地规划出满足无人驾驶车辆行驶的平滑路径。 展开更多
关键词 rrt算法 节点优化 目标偏置 搜索效率
在线阅读 下载PDF
改进RRT^(*)算法在复杂环境下的路径规划研究
16
作者 韩毅 孔米闯 +2 位作者 李建庆 秦瑞泽 姚静彤 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期13-22,共10页
针对传统RRT^(*)算法在复杂环境下规划路径时存在算法效率低、采样随机等问题,提出一种改进RRT^(*)算法(ADBI-RRT^(*))。加入目标偏置策略减少算法采样的随机性,引入改进的人工势场法增强算法目标导向性,赋予随机树快速跳出局部最优的能... 针对传统RRT^(*)算法在复杂环境下规划路径时存在算法效率低、采样随机等问题,提出一种改进RRT^(*)算法(ADBI-RRT^(*))。加入目标偏置策略减少算法采样的随机性,引入改进的人工势场法增强算法目标导向性,赋予随机树快速跳出局部最优的能力;然后采用双向生长策略,并基于距离阈值连接双树提高算法效率;在得到初始路径后,根据三角形原理剔除路径上的冗余点,同时结合线性插值与B样条曲线对路径进行平滑处理,提高路径质量。在不同环境下,通过Matlab软件将ADBI-RRT^(*)算法与传统RRT算法、RRT^(*)算法、某已有改进算法比较,发现ADBI-RRT^(*)算法能有效地减少路径生成时间和迭代次数,缩短路径长度,使路径更平滑。 展开更多
关键词 路径规划 ADBI-rrt^(*)算法 目标偏置 改进人工势场 距离阈值
在线阅读 下载PDF
改进RRT^(*)算法的无人车全局路径规划研究
17
作者 但远宏 黄彬彬 冯广旭 《计算机工程与应用》 北大核心 2025年第18期326-335,共10页
针对RRT^(*)算法在无人车全局路径规划中存在节点扩展效率低、搜索范围大以及路径曲折等问题,提出了一种基于自适应偏置采样与启发式多候选扩展节点的变步长RRT^(*)算法。该算法通过偏置公式自适应调整采样点向目标点方向,提高扩展质量... 针对RRT^(*)算法在无人车全局路径规划中存在节点扩展效率低、搜索范围大以及路径曲折等问题,提出了一种基于自适应偏置采样与启发式多候选扩展节点的变步长RRT^(*)算法。该算法通过偏置公式自适应调整采样点向目标点方向,提高扩展质量;在扩展阶段选取多个候选节点,动态调整步长并结合实际与潜在代价筛选最优扩展节点,增强环境适应性;生成初步路径后,利用启发式代价最大的路径节点状态引导采样,加速路径收敛;采用视线检查的双向寻优和插值B样条方法对路径进行后处理,提升路径平滑度。仿真实验结果表明,对比同类型其他算法,改进算法在路径规划效率、路径代价以及平滑度方面具有显著优势,为无人车快速获取无碰撞且平滑的全局最优路径提供了可靠保障。 展开更多
关键词 无人车 全局路径规划 rrt^(*)算法 偏置采样 启发式扩展 变步长
在线阅读 下载PDF
基于多策略改进的RRT算法
18
作者 文汉云 刘攀 《长江大学学报(自然科学版)》 2025年第1期111-118,共8页
针对传统RRT(rapidly exploring random tree)算法在复杂环境下收敛速度慢、存在重复采样、缺乏目标导向性和规划的路径质量不高的问题,提出一种贪婪搜索和目标导向的RRT算法(RRT-D算法),在传统RRT算法的基础上,改进节点的采样方式和父... 针对传统RRT(rapidly exploring random tree)算法在复杂环境下收敛速度慢、存在重复采样、缺乏目标导向性和规划的路径质量不高的问题,提出一种贪婪搜索和目标导向的RRT算法(RRT-D算法),在传统RRT算法的基础上,改进节点的采样方式和父节点的选取策略,取消步长限制,通过贪婪式的搜索方式一次生长10个候选节点,选取符合条件的且距离目标点最近的候选点作为子节点生长到树中,提高了算法的搜索能力,降低了路径代价;用动态减少重复搜索区域的方式减少了无效搜索;每次采样后判断采样点能否与目标点直接相连,增加了采样的目标导向性,提高了搜索效率,遍历全树构成无向图时,可根据总采样点数量,通过限制无向图边的长度来减少边的数量,由Dijkstra算法搜索代价最小的路径;最后由分段三次Hermite插值函数对路径进行平滑处理。试验结果表明,与传统RRT算法相比,RRT-D算法不仅大幅缩短了规划时间,而且得到的路径代价更小、更加平滑,节点的利用率更高,验证了RRT-D算法在路径规划中的优势。 展开更多
关键词 路径规划 rrt算法 rrt-D算法
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
19
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved PSO algorithm
在线阅读 下载PDF
基于改进RRT算法机械臂复杂避障路径规划研究 被引量:2
20
作者 付靖凯 慕丽 +2 位作者 邸雪阳 张昕楠 张慧 《现代电子技术》 北大核心 2025年第6期180-186,共7页
为解决复杂工况下的机械臂避障与路径规划问题,提出一种通过降维预实验预设分段式插值的改进RRT算法。该算法基于多次降维实验拟合,得到路径中间点,通过插值不断替换目标点,将长距离多障碍的目标路径分段求解,具有较好的时间与求解优势... 为解决复杂工况下的机械臂避障与路径规划问题,提出一种通过降维预实验预设分段式插值的改进RRT算法。该算法基于多次降维实验拟合,得到路径中间点,通过插值不断替换目标点,将长距离多障碍的目标路径分段求解,具有较好的时间与求解优势,并且能得到研究者所期望的路径走向。经过可视化结果对比:所提算法相比RRTConnect算法减少了约71%的收敛时间,减少了约58%的迭代计算量;而相对于传统RRT*算法减少了约45%的收敛时间,减少了83%的迭代运算量。最后通过Matlab仿真验证,实现轨迹优化与关节碰撞验证,并在真实工况下通过编程控制机器人复现算法得到的路径,验证了改进算法所求解的轨迹的收敛时间短且有效,具有良好的应用价值。 展开更多
关键词 改进rrt算法 机械臂避障 路径规划 预实验 分段式插值 轨迹优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部