期刊文献+
共找到11,515篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进APF-RRT的采摘机械臂运动路径规划
1
作者 贾通 潘星宇 +3 位作者 钱振东 路红 李佩娟 张文 《农机化研究》 北大核心 2026年第2期173-182,共10页
在农业自动化快速发展的背景下,机械臂作为果园智能采摘作业的核心设备,其路径规划能力直接影响作业效率。然而果园环境复杂,传统人工势场法(APF)、快速随机搜索树(RRT)等路径规划算法在避障能力与运动平滑等方面仍存在一定不足,难以满... 在农业自动化快速发展的背景下,机械臂作为果园智能采摘作业的核心设备,其路径规划能力直接影响作业效率。然而果园环境复杂,传统人工势场法(APF)、快速随机搜索树(RRT)等路径规划算法在避障能力与运动平滑等方面仍存在一定不足,难以满足高效、安全的采摘需求。针对上述问题,提出了一种基于改进APF-RRT的路径规划算法。通过人工势场引导目标采样方向,增强路径趋近性,并引入非线性斥力场模型平滑势能分布,缓解斥力突变导致的局部震荡;同时,设计了基于最小障碍距离的动态步长策略,自适应调整采样粒度,以兼顾搜索效率和避障精度;通过障碍可行性检测方法去除冗余节点,结合三次B样条曲线实现路径平滑处理,提升路径连续性与执行稳定性。试验表明:在二维空间环境下,改进APF-RRT算法较RRT与APF-RRT算法分别缩短耗时78.75%、58.99%,路径长度减少16.88%、5.93%;在三维空间环境下,耗时缩短88.85%、65.20%,路径长度减少19.60%、5.61%;在机械臂仿真环境中,改进算法生成的路径更加平滑,转折点数量减少。研究结果验证了改进APF-RRT算法在复杂果园下具备良好的全局搜索与避障能力,以及较好的有效性与稳定性。 展开更多
关键词 采摘机械臂 路径规划 人工势场法 快速随机搜索树 改进APF-rrt算法 避障
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
2
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning improved A^(*)algorithm
在线阅读 下载PDF
基于改进RRT算法的机械臂路径规划
3
作者 李伟达 姜宏 +3 位作者 章翔峰 马奔驰 陈林 张鹏飞 《现代电子技术》 北大核心 2026年第1期157-162,共6页
针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通... 针对快速扩展随机树(RRT)算法在机械臂路径规划中存在盲目搜索、计算时间长和冗余过程点比较多的问题,文中提出一种改进RRT算法。首先建立了固定采样函数,使得随机树的扩展更具有方向性;其次在自适应步长基础上加入动态目标偏置策略,通过避免对局部区域过度搜索来提高收敛速度;最后利用固定采样点构造两棵随机树进行搜索,解决了算法扩张速度慢、收敛速度慢和盲目性的问题。简单环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了18.3%、30%、63.5%,路径长度分别缩短了14.1%、3.5%、41.6%;复杂环境下仿真结果表明:改进RRT算法相对于其他三种算法收敛时间分别减少了56.4%、43.3%、67.6%,路径长度分别缩短了16.1%、9.7%、34.2%。证明了改进后的算法在解决收敛速度慢和导向问题上的有效性,同时算法对复杂环境的适应性也更强。 展开更多
关键词 机械臂 路径规划 rrt算法 固定采样点 自适应步长 动态目标偏置
在线阅读 下载PDF
Demodulation of Vernier-effect-based optical fiber strain sensor by using improved cross-correlation algorithm
4
作者 LIU Bin CAO Zhi-gang +7 位作者 WANG Xing-yun LIN Zi-han CHENG Rui LIU Jun SUN Yu-han ZHENG Shu-jun ZUO Cheng LIN Ji-ping 《中国光学(中英文)》 北大核心 2025年第6期1463-1474,共12页
The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured o... The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS. 展开更多
关键词 improved cross-correlation algorithm fiber sensor vernier effect machine learning
在线阅读 下载PDF
A dynamic fusion path planning algorithm for mobile robots incorporating improved IB-RRT∗and deep reinforcement learning 被引量:1
5
作者 刘安东 ZHANG Baixin +2 位作者 CUI Qi ZHANG Dan NI Hongjie 《High Technology Letters》 EI CAS 2023年第4期365-376,共12页
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl... Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments. 展开更多
关键词 mobile robot improved IB-rrtalgorithm deep reinforcement learning(DRL) real-time dynamic obstacle avoidance
在线阅读 下载PDF
Path Planning for Robotic Arms Based on an Improved RRT Algorithm 被引量:2
6
作者 Wei Liu Zhennan Huang +1 位作者 Yingpeng Qu Long Chen 《Open Journal of Applied Sciences》 2024年第5期1214-1236,共23页
The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operationa... The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning. 展开更多
关键词 Robotic Arm Path Planning rrt algorithm Adaptive Pruning Optimization
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
7
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Optimization design of launch window for large-scale constellation using improved genetic algorithm
8
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Deep Learning Mixed Hyper-Parameter Optimization Based on Improved Cuckoo Search Algorithm
9
作者 TONG Yu CHEN Rong HU Biling 《Wuhan University Journal of Natural Sciences》 2025年第2期195-204,共10页
Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,... Deep learning algorithm is an effective data mining method and has been used in many fields to solve practical problems.However,the deep learning algorithms often contain some hyper-parameters which may be continuous,integer,or mixed,and are often given based on experience but largely affect the effectiveness of activity recognition.In order to adapt to different hyper-parameter optimization problems,our improved Cuckoo Search(CS)algorithm is proposed to optimize the mixed hyper-parameters in deep learning algorithm.The algorithm optimizes the hyper-parameters in the deep learning model robustly,and intelligently selects the combination of integer type and continuous hyper-parameters that make the model optimal.Then,the mixed hyper-parameter in Convolutional Neural Network(CNN),Long-Short-Term Memory(LSTM)and CNN-LSTM are optimized based on the methodology on the smart home activity recognition datasets.Results show that the methodology can improve the performance of the deep learning model and whether we are experienced or not,we can get a better deep learning model using our method. 展开更多
关键词 improved Cuckoo Search algorithm mixed hyper-parameter OPTIMIZATION deep learning
原文传递
Design of high phase-sensitivity BlueP/TMDC heterostructure-based SPR biosensor using improved artificial bee colony algorithm
10
作者 Chong Yue Mantong Chen +1 位作者 Yaopu Lang Qinggang Liu 《Nanotechnology and Precision Engineering》 2025年第2期113-122,共10页
This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structu... This paper uses an innovative improved artificial bee colony(IABC)algorithm to aid in the fabrication of a highly responsive phasemodulation surface plasmon resonance(SPR)biosensor.In this biosensor’s sensing structure,a double-layer Ag-Au metal film is combined with a blue phosphorene/transition metal dichalcogenide(BlueP/TMDC)hybrid structure and graphene.In the optimization function of the IABC method,the reflectivity at resonance angle is incorporated as a constraint to achieve high phase sensitivity.The performance of the Ag-Au-BlueP/TMDC-graphene heterostructure as optimized by the IABC method is compared with that of a similar structure optimized using the traditional ABC algorithm.The results indicate that optimization using the IABC method gives significantly more phase sensitivity,together with lower reflectivity,than can be achieved with the traditional ABC method.The highest phase sensitivity of 3.662×10^(6) °/RIU is achieved with a bilayer of BlueP/WS2 and three layers of graphene.Moreover,analysis of the electric field distribution demonstrates that the optimal arrangement can be utilized for enhanced detection of small biomolecules.Thus,given the exceptional sensitivity achieved,the proposed method based on the IABC algorithm has great promise for use in the design of high-performance SPR biosensors with a variety of multilayer structures. 展开更多
关键词 SPR Phase modulation Sensitivity improved artificial bee colony algorithm BlueP/TMDC HETEROSTRUCTURE
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
11
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
12
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
13
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
基于TR-RRT算法的机械臂路径规划研究
14
作者 宋仁捷 葛长青 +1 位作者 张东阳 苗建军 《沈阳理工大学学报》 2026年第1期17-23,共7页
为使机器人在复杂环境中高效执行任务,不仅要求其具备一定的算力基础,还需对路径规划算法进行有效优化。针对传统RRT算法用于复杂环境时存在计算量庞大及路径搜索效率低下等问题,提出一种目标约束RRT(target restraint RRT,TR-RRT)算法... 为使机器人在复杂环境中高效执行任务,不仅要求其具备一定的算力基础,还需对路径规划算法进行有效优化。针对传统RRT算法用于复杂环境时存在计算量庞大及路径搜索效率低下等问题,提出一种目标约束RRT(target restraint RRT,TR-RRT)算法,通过引入目标偏置、约束点引导、冗余点移除、动态步长、三次样条插值等策略,增强搜索能力,提高搜索效率,并对规划的路径进行平滑处理。为验证本文改进算法的性能,分别在二维、三维环境以及Gazebo环境中进行仿真实验,并与RRT、RRT-Connect、Informed-RRT^(*)算法进行比较,结果表明,本文改进算法在不同实验环境下的规划时间和路径长度及节点数量均优于对比算法,显著提高了路径规划的效率与稳定性。 展开更多
关键词 rrt算法 路径规划 目标偏置 动态步长
在线阅读 下载PDF
Damage Detection of X-ray Image of Conveyor Belts with Steel Rope Cores Based on Improved FCOS Algorithm
15
作者 WANG Baomin DING Hewei +1 位作者 TENG Fei LIU Hongqin 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期309-318,共10页
Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose... Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage. 展开更多
关键词 conveyer belts with steel rope cores DAMAGE X-ray image image detection improved fully convo-lutional one-stage object detection(FCOS)algorithm
原文传递
Improved parallel weighted bit-flipping algorithm 被引量:1
16
作者 刘晓健 赵春明 吴晓富 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期423-426,共4页
An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ... An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes. 展开更多
关键词 low-density parity-check(LDPC) parallel weighted bit-flipping(PWBF) improved modified weighted bit-flipping (IMWBF) algorithm weighted-sum weighted bit-flipping (WSWBF) algorithm
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:2
17
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 rrt算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于改进RRT^(*)算法的无人机三维航迹规划 被引量:1
18
作者 陈明强 周子杨 +2 位作者 张勇 解靖涛 刘俊杰 《兵器装备工程学报》 北大核心 2025年第4期192-199,234,共9页
针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目... 针对渐进最优快速随机树(RRT^(*))算法在求解无人机三维航迹规划的问题时会出现搜索效率低下、随机性较强与航迹曲折的问题,提出了一种基于改进RRT^(*)算法的无人机三维航迹规划方法。该算法将贪婪算法思想融入目标偏置策略,同时考虑目标点的引导搜索与环境的影响,将算法搜索过程中的采样范围约束在指向目标点的一定角度方向内,并根据环境动态调整方向,减少采样点的无效搜索;对障碍物引入人工势场法中的斥力场,根据斥力势能大小相应地改变步长长度,进一步提高搜索效率;对航迹过于冗长曲折的问题,进行剪枝优化与B样条曲线平滑处理以提高航迹的平滑性。通过Matlab仿真实验,验证了所提出的改进算法在不同环境中均能以较快的搜索速度得到更优的航迹。 展开更多
关键词 rrt^(*) 三维航迹规划 贪婪算法 斥力场 B样条曲线
在线阅读 下载PDF
改进Informed RRT^(*)算法移动机器人路径规划 被引量:3
19
作者 鲁宇明 周羽逵 +2 位作者 郭鑫 池吕庭 戴骏 《计算机工程与应用》 北大核心 2025年第8期283-293,共11页
Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法... Informed RRT^(*)算法对初始解不敏感,规划出的路径太接近障碍物,导致路径不平滑。提出一种改进的Informed RRT^(*)路径规划算法,该算法改进了约束采样空间和引导策略。在采样初期,将采样区域限制在一个圆形区域,加快初始解收敛,在算法规划的过程中引入人工势场中引力场和斥力场的思想,使机器人与障碍物保持安全距离,并向目标位置行进。对Informed RRT^(*)算法和基于目标偏置的Informed RRT^(*)算法(Goal-bias-Informed RRT^(*))以及改进后的Informed RRT^(*)算法进行比较实验,实验结果验证了改进后Informed RRT^(*)算法的有效性和优越性及稳定性。该算法较Informed RRT^(*)算法和Goal-bias-Informed RRT^(*)效率更高、更容易得到初始解、更安全、更平滑、更稳定。 展开更多
关键词 移动机器人 路径规划 随机采样 Informed rrt^(*)算法 目标偏置 约束采样空间
在线阅读 下载PDF
基于改进RRT的协作机器人避障路径规划研究
20
作者 刘哲 何俊杰 +1 位作者 王天琪 王志刚 《组合机床与自动化加工技术》 北大核心 2025年第11期38-42,48,共6页
为了提升协作机器人在复杂多障碍环境中的避障路径规划效率和成功率,通过几何包络法构建了碰撞检测模型,并提出了一种基于扩展动作选择策略融合优化目标偏置策略的改进RRT算法。在传统RRT算法基础上设置一个目标偏置阈值,通过概率值P与... 为了提升协作机器人在复杂多障碍环境中的避障路径规划效率和成功率,通过几何包络法构建了碰撞检测模型,并提出了一种基于扩展动作选择策略融合优化目标偏置策略的改进RRT算法。在传统RRT算法基础上设置一个目标偏置阈值,通过概率值P与阈值大小对比,选择扩展动作,同时为解决局部最优问题引入优化目标偏置策略,通过将X′_(goal)和X_(rand)的矢量合成,确定最终的扩展方向;结合自适应步长,减少搜索时间,提高效率;对冗余节点进行删除,并采用三次B样条插值优化,提高协作机器人轨迹的柔顺性。通过与传统RRT和RRT^(*)算法进行仿真对比,发现路径长度和搜索时间均有显著下降。仿真结果显示,协作机器人在复杂的多障碍环境中表现出较强的适应性,路径搜索的成功率优于传统算法,同时与RRT算法相比,平均路径搜索时间显著缩短,从而提高了算法的效率和成功率。 展开更多
关键词 协作机器人 避障路径规划 优化目标偏置策略 rrt算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部