期刊文献+
共找到351篇文章
< 1 2 18 >
每页显示 20 50 100
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
1
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved pso algorithm
在线阅读 下载PDF
一种基于改进PSO算法的新型电力系统负荷波动柔性控制
2
作者 王超 《自动化技术与应用》 2026年第1期157-160,共4页
由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负... 由于当下电力需求的季节性、时段性等特点,导致电力需求在时间上存在差异,使得供需不匹配,造成供需矛盾。为此,柔性负荷调节成为解决供需矛盾的主要手段之一。为提高电力系统的稳定性和可靠性,研究一种基于改进PSO算法的新型电力系统负荷波动柔性控制方法。研究分为两个部分,前一部分将电压偏离量作为稳定性目标,将控制成本作为经济性目标,由二者构建新型电力系统负荷波动柔性控制多目标函数;后一部分利用细菌觅食优化算法改进PSO算法,利用改进PSO算法对多目标函数进行求解,得出新型电力系统负荷波动柔性控制方案。结果表明,控制前新型电力系统的负荷在[85 MW~400 MW]之间波动,用所研究方法控制后,负荷波动范围在[218 MW~258 MW]之间,二者相比,波动范围缩小,由此证明了所研究方法的控制性能佳。 展开更多
关键词 改进pso算法 新型电力系统 负荷波动 柔性控制方法 细菌觅食优化算法
在线阅读 下载PDF
An improved self-adaptive membrane computing optimization algorithm and its applications in residue hydrogenating model parameter estimation 被引量:1
3
作者 芦会彬 薄翠梅 杨世品 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3909-3915,共7页
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied... In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems. 展开更多
关键词 optimization algorithm membrane computing benchmark function improved self-adaptive operator
在线阅读 下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
4
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimizationpsoalgorithm fuzzy constraint construction feasibility degree
原文传递
Improved Bacterial Foraging Optimization Algorithm Based on Fuzzy Control Rule Base
5
作者 Cui-Cui Du Xu-Gang Feng Jia-Yan Zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第3期283-288,共6页
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi... Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance. 展开更多
关键词 Index Terms--Fuzzy control system Gaussian membership functions improved bacterial foraging optimization (IBFO) particle swarm optimization pso
在线阅读 下载PDF
Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization 被引量:1
6
作者 张雯雰 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期38-43,共6页
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem... A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization. 展开更多
关键词 evolutionary algorithms swarm intelli-gence group search optimizer(pso) large scale global optimization function optimization
原文传递
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:2
7
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于改进PSO算法的水库群防洪优化调度
8
作者 黄显峰 王浩天 +1 位作者 高玉琴 谭毅苗 《水利水电技术(中英文)》 北大核心 2025年第10期203-212,共10页
【目的】水库群防洪优化调度在暴雨洪涝灾情中发挥着重要作用,但现有研究在改进PSO算法中缺乏迭代过程中对粒子与最优解距离的约束与调节以及综合考虑优化调度期间下游防洪对象与水库自身安全。【方法】为更好地解决水库群防洪优化调度... 【目的】水库群防洪优化调度在暴雨洪涝灾情中发挥着重要作用,但现有研究在改进PSO算法中缺乏迭代过程中对粒子与最优解距离的约束与调节以及综合考虑优化调度期间下游防洪对象与水库自身安全。【方法】为更好地解决水库群防洪优化调度问题,建立以最大削峰和最高水位最小为目标函数的优化调度模型,以山东费县祊河流域的龙王口、上冶、许家崖和石岚四个水库为研究对象,利用三角函数和贝塔分布对PSO算法的惯性权重和学习因子进行动态调整优化迭代过程,同时引入中心极值定理对迭代过程进行实时约束与调控,对PSO算法进行改进,以百年一遇和千年一遇设计洪水的入库流量作为输入条件,结合防洪调度约束和洪水演进对山东费县水库群优化调度模型进行评估。【结果】结果显示:库容越大,削峰效果越明显,在百年一遇的输入条件下,许家崖水库最大下泄流量相比于常规调度减少了559.62 m^(3)/s,相比于标准PSO优化调度减少了279.81 m^(3)/s,削峰率为10.4%,库容相比于常规调度降低了6.4%,相比于标准PSO优化调度降低了5.3%,在千年一遇的输入条件下,许家崖水库最大下泄流量比常规调度减少了701.79 m^(3)/s,相比于PSO优化调度减少了350.90 m^(3)/s,削峰率为12.1%,库容相比于常规调度降低了9.2%,相比于PSO优化调度降低了4.8%。【结论】结果表明:该优化调度模型在实现最大削峰和最低水位控制方面表现出显著效果。所提出的算法在寻优过程中的精度和稳定性得到了有效保障,显示出良好的优化性能和较强的实际应用价值。 展开更多
关键词 水库群 削峰准则 改进pso算法 优化调度 影响因素
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
9
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
10
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization pso agile earth observation satellite (AEOS).
在线阅读 下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm 被引量:1
11
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
12
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进pso-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于POD和PSO-RBFNN的泵喷推进器尾部流场快速预测方法
13
作者 郭荣 罗鑫 +1 位作者 韩伟 李仁年 《振动与冲击》 北大核心 2025年第22期9-18,共10页
针对航行条件下泵喷推进器尾部流场预测计算规模大、分析耗时且成本高的问题,基于本征正交分解(proper orthogonal decomposition,POD)和经过粒子群优化(particle swarm optimization,PSO)算法改进的径向基神经网络(radial basis functi... 针对航行条件下泵喷推进器尾部流场预测计算规模大、分析耗时且成本高的问题,基于本征正交分解(proper orthogonal decomposition,POD)和经过粒子群优化(particle swarm optimization,PSO)算法改进的径向基神经网络(radial basis function neural network,RBFNN)方法构建快速预测模型(PSO-RBFNN)。采用中心复合设计(central composite design,CCD)方法对几何参数设计空间随机抽样,然后利用POD方法将高维流场数据映射到低维基模态空间,使用PSO-RBFNN建立几何参数到基模态系数的多层神经网络模型,实现尾部流场的快速预测。结果表明:经PSO优化的RBFNN模型具有更加优异的回归性能,构建的POD和PSO-RBFNN相结合混合模型可以实现泵喷推进器尾部流场分布特征快速准确预测,相对误差在8.0%以内;轴心速度呈现出先增后减并逐渐衰减为0的过程,POD&PSO-RBFNN混合模型能够准确预测这一动态特征。 展开更多
关键词 泵喷推进器 尾部喷流 本征正交分解(POD) 粒子群优化(pso)算法 径向基神经网络(RBFNN)
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
14
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进pso算法 BP神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于改进PSO算法的织机车间柔性作业调度方法研究
15
作者 操宇 江维 +2 位作者 聂骏杰 陈振 李红军 《纺织工程学报》 2025年第3期88-96,共9页
大型织机车间作业调度问题是一种典型的生产计划与调度问题,是车间调度问题的一种特殊形式,具有较高的复杂性。它涉及到如何合理分配和安排多个织机对不同生产任务进行加工,从而在满足多种约束条件的情况下优化某些目标。基于此,提出了... 大型织机车间作业调度问题是一种典型的生产计划与调度问题,是车间调度问题的一种特殊形式,具有较高的复杂性。它涉及到如何合理分配和安排多个织机对不同生产任务进行加工,从而在满足多种约束条件的情况下优化某些目标。基于此,提出了一种自适应多目标混合粒子群优化算法(Adaptive Multi-Objective Hybrid Particle Swarm Optimization,AMOHPSO),针对算法易陷入局部最优解的缺陷,融合了遗传算法(Genetic Algorithm,GA)的交叉和变异操作,从而增强了算法的性能和优化能力。针对收敛慢的问题,结合了混合局部搜索和全局搜索,使PSO(Particle Swarm Optimization,PSO)既能快速探索全局空间,也能在后期精细搜索局部空间。针对处理多目标调度问题,采用MOPSO的框架,改进PSO的适应度计算方式,使其能够生成多个不同目标的Pareto前沿解。改进的PSO算法求得全局最优解为0.0501,相较于遗传算法寻优精度提高了18.2%,与粒子群算法相比较,寻优精度也提高了10%;实验结果表明:所提出的改进算法在求解柔性作业车间调度问题时,具有较高的求解精度和较快的收敛速度。 展开更多
关键词 织机车间 改进pso 车间调度问题 柔性作业 自适应多目标优化算法
在线阅读 下载PDF
基于PSO-RBF代理模型的板料成形本构参数反求优化研究 被引量:13
16
作者 乔良 宋小欣 +2 位作者 谢延敏 王杰 王新宝 《中国机械工程》 EI CAS CSCD 北大核心 2014年第19期2680-2685,共6页
为了准确获取材料在复杂应力应变状态下的板料成形本构参数,提高板料成形有限元数值模拟的精度,提出了基于改进径向基函数代理模型的板料成形参数反求优化方法。将径向修正系数引入径向基函数(RBF)核函数中,利用粒子群算法(PSO)对径向... 为了准确获取材料在复杂应力应变状态下的板料成形本构参数,提高板料成形有限元数值模拟的精度,提出了基于改进径向基函数代理模型的板料成形参数反求优化方法。将径向修正系数引入径向基函数(RBF)核函数中,利用粒子群算法(PSO)对径向修正系数进行优化,提高模型的预测精度。将PSO-RBF模型应用到一个非线性测试函数中,结果表明,PSO-RBF模型比RBF模型的预测精度提高很多;同时将PSO-RBF模型应用到板料成形本构参数反求中,代替有限元模型进行正问题计算,可节省计算成本和提高效率。结果表明,基于PSO-RBF模型反求优化得到的材料参数,能够更加准确地反映材料的流动趋势以及应变分布。 展开更多
关键词 板料成形 径向基函数 粒子群算法 参数反求
在线阅读 下载PDF
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
17
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
在线阅读 下载PDF
基于改进PSO算法的Rosenbrock函数优化问题的研究 被引量:13
18
作者 邵鹏 吴志健 《计算机科学》 CSCD 北大核心 2013年第9期194-197,共4页
Rosenbrock函数优化属于无约束函数优化问题,其全局极小值位于一条平滑而狭长的抛物线形状的山谷底部,且为优化算法提供的信息很少,因此找到其全局极小值就显得很困难。根据Rosenbrock函数的这种特性,专门提出了一种改进的PSO算法(PSO-... Rosenbrock函数优化属于无约束函数优化问题,其全局极小值位于一条平滑而狭长的抛物线形状的山谷底部,且为优化算法提供的信息很少,因此找到其全局极小值就显得很困难。根据Rosenbrock函数的这种特性,专门提出了一种改进的PSO算法(PSO-R),该算法引入三角函数因子,利用三角函数具有的周期振荡性,使每个粒子获得较强的振荡性,扩大每个粒子的搜索空间,引导粒子向全局极小值附近靠近,避免算法过早地收敛,陷入局部最优,从而找到Rosenbrock函数的全局极小值。大量实验结果表明,该算法具有很好的优化性能,为某些领域某些特定的类似于Rosenbrock函数的优化问题提供了一种新的思路。 展开更多
关键词 无约束优化 Rosenbrock函数 粒子群算法 三角函数因子
在线阅读 下载PDF
基于改进PSO的发酵过程同步串联混合建模 被引量:7
19
作者 杨强大 张卫军 牛大鹏 《自动化学报》 EI CSCD 北大核心 2015年第3期620-630,共11页
准确可靠的过程模型是实现发酵过程优化的基础和前提.对于反应机理复杂的发酵过程,串联混合建模是一种相对有效的建模方法,但现有方法需要利用插值所得的数据进行中间变量黑箱模型的构建,较大程度地影响了所建混合模型的泛化性能.为此,... 准确可靠的过程模型是实现发酵过程优化的基础和前提.对于反应机理复杂的发酵过程,串联混合建模是一种相对有效的建模方法,但现有方法需要利用插值所得的数据进行中间变量黑箱模型的构建,较大程度地影响了所建混合模型的泛化性能.为此,提出一种可将黑箱模型构建问题转化为动态模型参数辨识问题的同步串联混合建模方法,从而避免了现有方法需利用插值数据来构建黑箱模型的不足;通过引入多精英学习策略和惯性权重自适应调整策略,构造了一种改进的粒子群优化(Particle swarm optimization,PSO)算法—自适应多精英学习PSO(Adaptive multi-elite learning PSO,AMLPSO)算法,并采用该算法求取黑箱模型的参数;借鉴均匀设计思想确定黑箱模型的结构.利用诺西肽分批发酵过程实际生产数据进行实验研究,结果验证了所提方法的有效性. 展开更多
关键词 发酵过程 同步串联混合建模 粒子群优化 算法改进 均匀设计
在线阅读 下载PDF
一种改进PSO优化RBF神经网络的新方法 被引量:18
20
作者 段其昌 赵敏 王大兴 《计算机仿真》 CSCD 北大核心 2009年第12期126-129,共4页
为了克服神经网络模型结构和参数难以设置的缺点,提出了一种改进粒子群优化的径向基函数(RBF)神经网络的新方法。首先将最近邻聚类用于RBF神经网络隐层中心向量的确定,同时对引入适应度值择优选取的原则对基本粒子群算法进行改进,采用... 为了克服神经网络模型结构和参数难以设置的缺点,提出了一种改进粒子群优化的径向基函数(RBF)神经网络的新方法。首先将最近邻聚类用于RBF神经网络隐层中心向量的确定,同时对引入适应度值择优选取的原则对基本粒子群算法进行改进,采用改进粒子群(IMPSO)算法对最近邻聚类的聚类半径进行优化,合理的确定了RBF神经网络的隐层结构。将改进PSO优化的RBF神经网络应用于非线性函数逼近和混沌时间序列预测,经实验仿真验证,与基本粒子群(PSO)算法,收缩因子粒子群(CFA PSO)算法优化的RBF神经网络相比较,其在识别精度和收敛速度上都有了显著的提高。 展开更多
关键词 粒子群 径向基函数神经网络 最近邻聚类 收缩因子
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部