期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
An Improved Whale Optimization Algorithm for Feature Selection 被引量:4
1
作者 Wenyan Guo Ting Liu +1 位作者 Fang Dai Peng Xu 《Computers, Materials & Continua》 SCIE EI 2020年第1期337-354,共18页
Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in term... Whale optimization algorithm(WOA)is a new population-based meta-heuristic algorithm.WOA uses shrinking encircling mechanism,spiral rise,and random learning strategies to update whale’s positions.WOA has merit in terms of simple calculation and high computational accuracy,but its convergence speed is slow and it is easy to fall into the local optimal solution.In order to overcome the shortcomings,this paper integrates adaptive neighborhood and hybrid mutation strategies into whale optimization algorithms,designs the average distance from itself to other whales as an adaptive neighborhood radius,and chooses to learn from the optimal solution in the neighborhood instead of random learning strategies.The hybrid mutation strategy is used to enhance the ability of algorithm to jump out of the local optimal solution.A new whale optimization algorithm(HMNWOA)is proposed.The proposed algorithm inherits the global search capability of the original algorithm,enhances the exploitation ability,improves the quality of the population,and thus improves the convergence speed of the algorithm.A feature selection algorithm based on binary HMNWOA is proposed.Twelve standard datasets from UCI repository test the validity of the proposed algorithm for feature selection.The experimental results show that HMNWOA is very competitive compared to the other six popular feature selection methods in improving the classification accuracy and reducing the number of features,and ensures that HMNWOA has strong search ability in the search feature space. 展开更多
关键词 Whale optimization algorithm Filter and Wrapper model k-nearest neighbor method Adaptive neighborhood hybrid mutation
在线阅读 下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
2
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
在线阅读 下载PDF
An Optimization System for Intent Recognition Based on an Improved KNN Algorithm with Minimal Feature Set for Powered Knee Prosthesis
3
作者 Yao Zhang Xu Wang +6 位作者 Haohua Xiu Lei Ren Yang Han Yongxin Ma Wei Chen Guowu Wei Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2619-2632,共14页
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me... In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee. 展开更多
关键词 Intent recognition k-nearest neighbor algorithm Powered knee prosthesis Locomotion mode classification
在线阅读 下载PDF
Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
4
作者 Zhao Chen Ning Xiong +6 位作者 Yujue Wang Yong Ding Hengkui Xiang Chenjun Tang Lingang Liu Xiuqing Zou Decun Luo 《国际计算机前沿大会会议论文集》 2019年第1期238-240,共3页
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically ... Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy. 展开更多
关键词 INTERFERENCE protection k-nearest neighbor algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
在线阅读 下载PDF
Feature Selection Based on Improved White Shark Optimizer
5
作者 Qianqian Cui Shijie Zhao +1 位作者 Miao Chen Qiuli Zhao 《Journal of Bionic Engineering》 CSCD 2024年第6期3123-3150,共28页
Feature Selection(FS)is an optimization problem that aims to downscale and improve the quality of a dataset by retaining relevant features while excluding redundant ones.It enhances the classification accuracy of a da... Feature Selection(FS)is an optimization problem that aims to downscale and improve the quality of a dataset by retaining relevant features while excluding redundant ones.It enhances the classification accuracy of a dataset and holds a crucial position in the field of data mining.Utilizing metaheuristic algorithms for selecting feature subsets contributes to optimizing the FS problem.The White Shark Optimizer(WSO),as a metaheuristic algorithm,primarily simulates the behavior of great white sharks’sense of hearing and smelling during swimming and hunting.However,it fails to consider their other randomly occurring behaviors,for example,Tail Slapping and Clustered Together behaviors.The Tail Slapping behavior can increase population diversity and improve the global search performance of the algorithm.The Clustered Together behavior includes access to food and mating,which can change the direction of local search and enhance local utilization.It incorporates Tail Slapping and Clustered Together behavior into the original algorithm to propose an Improved White Shark Optimizer(IWSO).The two behaviors and the presented IWSO are tested separately using the CEC2017 benchmark functions,and the test results of IWSO are compared with other metaheuristic algorithms,which proves that IWSO combining the two behaviors has a stronger search capability.Feature selection can be mathematically described as a weighted combination of feature subset size and classification error rate as an optimization model,which is iteratively optimized using discretized IWSO which combines with K-Nearest Neighbor(KNN)on 16 benchmark datasets and the results are compared with 7 metaheuristics.Experimental results show that the IWSO is more capable in selecting feature subsets and improving classification accuracy. 展开更多
关键词 Metaheuristic algorithm Feature Selection White Shark Optimizer k-nearest neighbor
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
6
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
7
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model k-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
8
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
9
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
基于改进双目ORB-SLAM3的特征匹配算法 被引量:1
10
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
11
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权K近邻算法 高斯变换
原文传递
改进自适应大邻域搜索算法及其在旅行商问题中的应用
12
作者 敖弘瑞 张纪会 陈晟宗 《计算机应用研究》 北大核心 2025年第6期1713-1718,共6页
为了克服自适应大邻域搜索算法(ALNS)在解决大规模旅行商问题时面临的初始温度设定困难及求解精度不足的问题,对传统ALNS进行了改进。首先,基于最近邻信息,提出了近邻移除算子和非近邻移除算子两种更具指向性的移除算子。前者负责区域... 为了克服自适应大邻域搜索算法(ALNS)在解决大规模旅行商问题时面临的初始温度设定困难及求解精度不足的问题,对传统ALNS进行了改进。首先,基于最近邻信息,提出了近邻移除算子和非近邻移除算子两种更具指向性的移除算子。前者负责区域性地移除解的部分,而后者则专注于单点移除,从而提高了搜索效率。其次,采用改进的RRT(record-to-record travel)接受准则替换了传统的Metropolis准则,这一改变不仅消除了对初始温度参数的需求,还增强了算法的通用性。最后在TSPLIB数据库中不同规模的多个测试算例上进行实验,并将结果与新型启发式算法进行比较,发现改进后的ALNS在求解精度和收敛速度方面均表现出色,并显示出处理大规模问题的潜力。 展开更多
关键词 改进自适应大邻域搜索算法 近邻算子 RRT接受准则 旅行商问题
在线阅读 下载PDF
Predictive modeling of geophysical anomalies in the metasediments of Bugaji area, part of Malumfashi Schist Belt, North-Western Nigeria
13
作者 Abdullah Musa Ali Mubarak Muhammad 《Earth Energy Science》 2025年第3期242-255,共14页
The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challeng... The Bugaji area,situated within the Malumfashi Schist Belt of northwestern Nigeria,primarily consists of metasediments that include quartzo-feldspathic and pelitic schists,and gneiss.However,this area poses a challenge in mineral exploration due to limited outcrop exposures and complex subsurface structures.Hence,there is the need for exhaustive geophysical studies and supplementary approaches to accurately delineate lithologies and structures.Therefore,this study combines field mapping and geophysical techniques with artificial intelligence(AI)modeling,comprising supervised learning algorithms,to overcome this exploration problem.Utilizing sophisticated AI techniques,specifically the Random Forest Classifier and K-Nearest Neighbor algorithms,geophysical data(gravity,magnetic,and radiometric measurements)were processed and analyzed.The AI model effectively filled data gaps,and identified potential lithological variations and prospective mineralization zones based on geophysical signatures derived from the integrated dataset.The AI modeling's commendable average accuracy of 85%in predicting values underscores its efficacy in interpreting geophysical data.The success of random forest in the geological mapping process can be attributed to its ability to handle high-dimensional data,capture non-linear relationships between input variables,and mitigate overfitting.The integrated approach enhanced our understanding of subsurface geology in the Bugaji area. 展开更多
关键词 METASEDIMENTS Geophysical anomalies Bugaji area Gravity Magnetic and Radiometric measurements Random Forest Classifier and k-nearest neighbor algorithms
在线阅读 下载PDF
基于改进KNN的电力计量异常的检测方法
14
作者 王慧 张智晶 +2 位作者 罗雪霏 王琦 魏然 《电气自动化》 2025年第4期18-20,24,共4页
针对电力计量自动化系统异常分析问题,提出了一种基于改进K最近邻算法(K-nearest neighbor, KNN)的计量异常的检测方法。通过概述电力计量自动化系统的结构以及常见电力计量异常检测模型,给出异常用电评估指标及常见检测方法,并重点探... 针对电力计量自动化系统异常分析问题,提出了一种基于改进K最近邻算法(K-nearest neighbor, KNN)的计量异常的检测方法。通过概述电力计量自动化系统的结构以及常见电力计量异常检测模型,给出异常用电评估指标及常见检测方法,并重点探究改进KNN的计量自动化终端检测应用,验证了其在电力计量自动化系统中的有效性。算例分析表明,基于改进KNN的异常检测方法可以很好地定位异常。 展开更多
关键词 自动化系统 异常检测 电力计量 改进K最近邻算法
在线阅读 下载PDF
5G通信室分技术下隐性故障识别优化方法研究
15
作者 张婧 《微型电脑应用》 2025年第7期256-259,共4页
由于噪声干扰,导致5G通信室分技术的隐性故障识别效果不佳,为此,提出一种基于改进K最近邻算法的5G通信室分技术下隐性故障识别优化方法。利用经验模态分解(EMD)算法分析5G通信信号,结合小波阈值滤波降噪信号。引入K最近邻算法,通过词频... 由于噪声干扰,导致5G通信室分技术的隐性故障识别效果不佳,为此,提出一种基于改进K最近邻算法的5G通信室分技术下隐性故障识别优化方法。利用经验模态分解(EMD)算法分析5G通信信号,结合小波阈值滤波降噪信号。引入K最近邻算法,通过词频—逆文档频率(TFIDF)的分布式计算改进算法,结合余弦相似度,构建5G通信室分技术下隐性故障识别方法,实现故障识别。结果表明,所提方法的5G通信信号降噪能力较好,最小均方误差值仅为0.045,误识率为1.72%,所提方法在识别能力和效率方面具有一定的优势。 展开更多
关键词 改进K最近邻算法 5G通信 室分技术 隐性故障 识别优化
在线阅读 下载PDF
Optimizing Clear Air Turbulence Forecasts Using the K-Nearest Neighbor Algorithm
16
作者 Aoqi GU Ye WANG 《Journal of Meteorological Research》 CSCD 2024年第6期1064-1077,共14页
The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.Howe... The complexity and unpredictability of clear air turbulence(CAT)pose significant challenges to aviation safety.Accurate prediction of turbulence events is crucial for reducing flight accidents and economic losses.However,traditional turbulence prediction methods,such as ensemble forecasting techniques,have certain limitations:they only consider turbulence data from the most recent period,making it difficult to capture the nonlinear relationships present in turbulence.This study proposes a turbulence forecasting model based on the K-nearest neighbor(KNN)algorithm,which uses a combination of eight CAT diagnostic features as the feature vector and introduces CAT diagnostic feature weights to improve prediction accuracy.The model calculates the results of seven years of CAT diagnostics from 125 to 500 hPa obtained from the ECMWF fifth-generation reanalysis dataset(ERA5)as feature vector inputs and combines them with the labels of Pilot Reports(PIREP)annotated data,where each sample contributes to the prediction result.By measuring the distance between the current CAT diagnostic variable and other variables,the model determines the climatically most similar neighbors and identifies the turbulence intensity category caused by the current variable.To evaluate the model’s performance in diagnosing high-altitude turbulence over Colorado,PIREP cases were randomly selected for analysis.The results show that the weighted KNN(W-KNN)model exhibits higher skill in turbulence prediction,and outperforms traditional prediction methods and other machine learning models(e.g.,Random Forest)in capturing moderate or greater(MOG)level turbulence.The performance of the model was confirmed by evaluating the receiver operating characteristic(ROC)curve,maximum True Skill Statistic(maxTSS=0.552),and reliability plot.A robust score(area under the curve:AUC=0.86)was obtained,and the model demonstrated sensitivity to seasonal and annual climate fluctuations. 展开更多
关键词 clear air turbulence k-nearest neighbor(KNN)algorithm the ECMWF fifth-generation reanalysis dataset(ERA5) turbulence prediction
原文传递
基于改进最近邻的协同过滤推荐算法 被引量:30
17
作者 硕良勋 柴变芳 张新东 《计算机工程与应用》 CSCD 北大核心 2015年第5期137-141,共5页
针对当前协同过滤推荐算法易受数据稀疏性与冷启动的问题,提出了一种改进最近邻的协同过滤推荐算法。建立用户-项目评分矩阵,并度量项目之间、用户之间的相似性,获取项目和用户的最近邻居,其中最近邻居的最优参数k值采用粒子群算法选择,... 针对当前协同过滤推荐算法易受数据稀疏性与冷启动的问题,提出了一种改进最近邻的协同过滤推荐算法。建立用户-项目评分矩阵,并度量项目之间、用户之间的相似性,获取项目和用户的最近邻居,其中最近邻居的最优参数k值采用粒子群算法选择,在Movie Lens和Book-Crossing数据集上进行了仿真对比实验。结果表明,相对于其他协同过滤推荐算法,该算法降低了平均绝对误差值,提升了推荐准确度,达到提高推荐质量效果的目的。 展开更多
关键词 协同过滤 改进最近邻 粒子群优化算法 参数选择
在线阅读 下载PDF
近红外光谱结合非线性模式识别方法进行牛奶中掺假物质的判别 被引量:8
18
作者 倪力军 钟霖 +2 位作者 张鑫 张立国 黄士新 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第10期2673-2678,共6页
以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵... 以287例上海及上海周边地区牧场的生鲜奶作为真奶样本集组成3个真奶样品集合,配制了526例含有糊精(或淀粉)+三聚氰胺(或尿素、或硝酸铵)的掺假牛奶形成6个不同种类的假奶样品集合,其中糊精、淀粉在掺假奶中的含量为0.15%~0.45%;硝酸铵、尿素和三聚氰胺的含量分别为700~2 100,524~1 572与365.5~1 096.5mg·kg-1,以保证掺假奶中凯氏定氮法测得的蛋白含量不低于3%。所有样本的近红外光谱均经过标准正态变换(SNV)预处理。将3个真奶样品集合和6个假奶样品集合进行不同的组合并对其采用改进与简化的K最邻近结点算法(IS-KNN)和改进与简化的支持向量机法(ν-SVM)建立了判别糊精、淀粉、三聚氰胺、尿素、硝酸铵这5类掺假物质的近红外判别模型,探寻掺假物质的浓度与识别正确率之间的关系。结果表明IS-KNN和ν-SVM两种方法对含三聚氰胺、尿素、硝酸铵的掺假牛奶的平均判别正确率分别在49.55%~51.01%,61.78%~68.79%与68.25%~73.51%区间波动,说明在该研究的掺假物浓度范围内,很难用近红外模型良好区分不同类型伪蛋白的掺假奶;IS-KNN和ν-SVM两种方法对含淀粉的掺假牛奶的判别正确率分别为92.33%与93.66%、对含糊精的掺假牛奶的平均判别正确率分别为77.29%与85.08%。从整体结果上来看ν-SVM法进行建模判别的结果大部分优于IS-KNN法进行建模判别的结果。对判别正确率与样品中掺假物质的含量水平分析表明近红外光谱结合非线性模式识别方法能良好地区分掺假奶中含量较高(0.15%~0.45%)的糊精和淀粉,而对含量偏低的三聚氰胺等伪蛋白的判别效果不佳,说明近红外光谱技术不适于鉴别牛奶中含量低于0.1%的掺假物质。 展开更多
关键词 近红外光谱 液态奶掺假物质判别 改进与简化的支持向量机方法 改进与简化的KNN方法
在线阅读 下载PDF
基于改进SURF算子的彩色图像配准算法 被引量:36
19
作者 任克强 胡梦云 《电子测量与仪器学报》 CSCD 北大核心 2016年第5期748-756,共9页
为了解决传统SURF算法存在的问题,提高彩色图像配准的精度和准确率,提出一种双向邻近匹配的彩色图像配准算法。该算法对传统的SURF描述符进行改进,将图像的色彩信息叠加在只包含灰度信息的传统SURF特征描述符上,组成改进的SURF特征描述... 为了解决传统SURF算法存在的问题,提高彩色图像配准的精度和准确率,提出一种双向邻近匹配的彩色图像配准算法。该算法对传统的SURF描述符进行改进,将图像的色彩信息叠加在只包含灰度信息的传统SURF特征描述符上,组成改进的SURF特征描述符,以增强彩色信息对配准的影响,提高配准的准确率;采用FLANN算法搜索匹配点对,并对匹配点对进行双向邻近匹配,以提高搜索效率和匹配精度;利用改进RANSAC算法剔除匹配错误的特征点对,以进一步优化匹配结果。实验结果表明,该算法能够有效地提高彩色图像配准的精度和准确率,具有较好的鲁棒性和图像变换适应性。 展开更多
关键词 彩色图像配准 改进特征描述向量 双向邻近匹配 SURF算法
在线阅读 下载PDF
基于机器视觉的焊点检测算法研究 被引量:11
20
作者 刘美菊 李凌燕 郭文博 《电子器件》 CAS 北大核心 2017年第4期1015-1020,共6页
为了提高电路板焊点检测的准确率,提出了改进的K-近邻法。首先,采用工业相机采集图像并选取470个焊点作为训练样本,利用模板匹配法对图像中的焊点进行定位。然后根据特征分布直方图提取焊点的特征并绘制特征分布情况,选择能区分不同类... 为了提高电路板焊点检测的准确率,提出了改进的K-近邻法。首先,采用工业相机采集图像并选取470个焊点作为训练样本,利用模板匹配法对图像中的焊点进行定位。然后根据特征分布直方图提取焊点的特征并绘制特征分布情况,选择能区分不同类别焊点的特征作为有效特征。最后,建立改进的K-近邻法焊点检测分类器,选取559个焊点作为测试样本对模型进行测试。实验结果表明改进的K-近邻算法检测的准确率96%以上,可以有效地提高检测效率。 展开更多
关键词 机器视觉 焊点检测 特征提取 改进的K-近邻法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部