期刊文献+
共找到1,786篇文章
< 1 2 90 >
每页显示 20 50 100
Object Recognition Algorithm Based on an Improved Convolutional Neural Network 被引量:1
1
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
在线阅读 下载PDF
A NEW RETROFIT APPROACH FOR HEAT EXCHANGER NETWORKS—IMPROVED GENETIC ALGORITHM
2
作者 王克峰 姚平经 +2 位作者 袁一 于福东 施光燕 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第4期65-76,共12页
Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state ... Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion. 展开更多
关键词 HEAT EXCHANGER network FLEXIBILITY analysis and RETROFIT improved GENETIC algorithm
在线阅读 下载PDF
Improved Bat Algorithm Based Energy Efficient Congestion Control Scheme for Wireless Sensor Networks 被引量:1
3
作者 Mukhdeep Singh Manshahia Mayank Dave Satya Bir Singh 《Wireless Sensor Network》 2016年第11期229-241,共14页
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between... Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization). 展开更多
关键词 improved Bat algorithm Congestion Control Wireless Sensor networks
在线阅读 下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
4
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
5
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
在线阅读 下载PDF
AN IMPROVED GN ALGORITHM OF NETWORK COMMUNITY DETECTION METHOD
6
作者 WU Guodong SONG Fugen 《International English Education Research》 2017年第4期75-77,共3页
.GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN alg... .GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN algorithm. The algorithm firstly get the network center nodes set, then use the shortest paths between center nodes and other nodes to calculate the edge betweenness, and then use incremental module degree as the algorithm terminates standard. Experiments show that, the new algorithm not only ensures accuracy of network community division, but also greatly reduced the time complexity, and improves the efficiency of community division. 展开更多
关键词 Complex network Community detection Center node improved GN algorithm
在线阅读 下载PDF
Coal mine safety production forewarning based on improved BP neural network 被引量:39
7
作者 Wang Ying Lu Cuijie Zuo Cuiping 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期319-324,共6页
Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method... Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production. 展开更多
关键词 improved PSO algorithm BP neural network Coal mine safety production Early warning
在线阅读 下载PDF
Fault Attribute Reduction of Oil Immersed Transformer Based on Improved Imperialist Competitive Algorithm
8
作者 Li Bian Hui He +1 位作者 Hongna Sun Wenjing Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第6期83-90,共8页
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ... The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer. 展开更多
关键词 transformer fault improved imperialist competitive algorithm rough set attribute reduction BP neural network
在线阅读 下载PDF
Research on BP Neural Network Algorithm Based on Quasi- Newton Method 被引量:3
9
作者 Lu Peixin 《International Journal of Technology Management》 2014年第7期71-74,共4页
With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After f... With more and more researches about improving BP algorithm, there are more improvement methods. The paper researches two improvement algorithms based on quasi-Newton method, DFP algorithm and L-BFGS algorithm. After fully analyzing the features of quasi- Newton methods, the paper improves BP neural network algorithm. And the adjustment is made for the problems in the improvement process. The paper makes empirical analysis and proves the effectiveness of BP neural network algorithm based on quasi-Newton method. The improved algorithms are compared with the traditional BP algorithm, which indicates that the imoroved BP algorithm is better. 展开更多
关键词 Newton method BP neural network improved algorithm
在线阅读 下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
10
作者 LV Gan-yun CHENG Hao-zhong +1 位作者 ZHA Hai-bao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality(PQ)disturbances identification is brought forward based on combining a neural network with least square(LS)weighted fusion algorithm.The characteristic components of PQ disturbances are ... A new method for power quality(PQ)disturbances identification is brought forward based on combining a neural network with least square(LS)weighted fusion algorithm.The characteristic components of PQ disturbances are distilled through an improved phase-located loop(PLL)system at first,and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively.The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm,and identifies PQ disturbances with the fused result finally.Compared with a single neural network,the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong.However,a single neural network may fail in this case.Furthermore,the combining neural network is more reliable than a single neural network.The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
在线阅读 下载PDF
基于改进GA-BP神经网络的激光位移传感器误差校正研究
11
作者 张斌 刘彦甲 罗康 《激光杂志》 北大核心 2025年第11期118-123,共6页
当前激光位移传感器误差通常通过标准量块进行校正,在校正过程中需确保被校传感器发出的激光与量块的中心线保持平行。然而,这种平行度的控制难度较大,如果安装不当会导致传感器误差增加。改进GA-BP神经网络具有较强的自适应学习能力,... 当前激光位移传感器误差通常通过标准量块进行校正,在校正过程中需确保被校传感器发出的激光与量块的中心线保持平行。然而,这种平行度的控制难度较大,如果安装不当会导致传感器误差增加。改进GA-BP神经网络具有较强的自适应学习能力,这种能力使得网络能够适应不同的工作环境和目标表面特性,减少人为操作的误差,并且能在传感器工作过程中实时进行校正,提高测量的实时性和准确性,因此,提出了基于改进GA-BP神经网络的激光位移传感器误差校正方法。通过正弦定理确定激光位移传感器误差,将传感器误差最小化作为目标构建改进GA-BP神经网络。将激光位移传感器在不同条件下的测量数据输入此网络,经隐藏层学习激光位移传感器测量误差与输入数据之间的复杂映射关系,由输出层输出误差补偿量,从而完成激光位移传感器误差校正。实验结果表明,将所提方法应用于不同倾角角度下的激光位移传感器误差校正后,传感器的测距误差降低幅度明显,实际应用效果好。 展开更多
关键词 改进遗传算法 改进BP神经网络 激光位移 传感器 误差校正 激光三角法
原文传递
Real-Time Ship Roll Prediction via a Novel Stochastic Trainer-Based Feedforward Neural Network
12
作者 XU Dong-xing YIN Jian-chuan 《China Ocean Engineering》 2025年第4期608-620,共13页
Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dyn... Enhancing the accuracy of real-time ship roll prediction is crucial for maritime safety and operational efficiency.To address the challenge of accurately predicting the ship roll status with nonlinear time-varying dynamic characteristics,a real-time ship roll prediction scheme is proposed on the basis of a data preprocessing strategy and a novel stochastic trainer-based feedforward neural network.The sliding data window serves as a ship time-varying dynamic observer to enhance model prediction stability.The variational mode decomposition method extracts effective information on ship roll motion and reduces the non-stationary characteristics of the series.The energy entropy method reconstructs the mode components into high-frequency,medium-frequency,and low-frequency series to reduce model complexity.An improved black widow optimization algorithm trainer-based feedforward neural network with enhanced local optimal avoidance predicts the high-frequency component,enabling accurate tracking of abrupt signals.Additionally,the deterministic algorithm trainer-based neural network,characterized by rapid processing speed,predicts the remaining two mode components.Thus,real-time ship roll forecasting can be achieved through the reconstruction of mode component prediction results.The feasibility and effectiveness of the proposed hybrid prediction scheme for ship roll motion are demonstrated through the measured data of a full-scale ship trial.The proposed prediction scheme achieves real-time ship roll prediction with superior prediction accuracy. 展开更多
关键词 ship roll prediction data preprocessing strategy sliding data widow improved black widow optimization algorithm stochastic trainer feedforward neural network
在线阅读 下载PDF
基于改进灰狼算法的磁悬浮离心泵优化设计
13
作者 赵伟国 路一帆 《农业机械学报》 北大核心 2026年第1期280-289,共10页
为了提高磁悬浮离心泵的水力效率,选取某型号的磁悬浮离心泵为研究对象,在流量15 L/min、转速6000 r/min的工况下以泵的效率最大值作为优化目标,基于泵的基本方程采用Plackett-Burman试验设计筛选出对效率影响最为显著几何参数,最终选... 为了提高磁悬浮离心泵的水力效率,选取某型号的磁悬浮离心泵为研究对象,在流量15 L/min、转速6000 r/min的工况下以泵的效率最大值作为优化目标,基于泵的基本方程采用Plackett-Burman试验设计筛选出对效率影响最为显著几何参数,最终选出叶片进口边交点节圆直径、节圆切线与工作面切线的夹角、叶片工作面型线半径、叶片背面型线半径、前盖板轴面投影线与竖直方向的夹角作为优化变量。采用最优拉丁超立方设计方法设计了50组试验方案,并结合数值模拟的方法计算出相应的扬程和效率,引入RBF神经网络进行训练得到优化变量与优化目标之间的近似模型,最后利用改进后的灰狼算法进行寻优。结果表明:经过优化,磁悬浮离心泵的扬程提高了0.06 m,水力效率提高了0.56个百分点,同时流量-扬程曲线变得更加平滑,使泵的运行更加稳定;优化后叶轮流道变宽,流道内的压力梯度变小,漩涡在径向收缩,叶片工作面的漩涡几乎消失,流动状况有所改善;叶轮流道内湍动能分布更加合理,同时低湍动能区域增加,流动损失减少,叶片做功能力提高,水力效率也因此提高。 展开更多
关键词 磁悬浮离心泵 改进灰狼算法 RBF神经网络 水力效率 湿法刻蚀清洗设备
在线阅读 下载PDF
基于改进GA-BP网络算法的边坡力学参数反演分析 被引量:13
14
作者 闵江涛 杨杰 马晨原 《水电能源科学》 北大核心 2019年第11期152-155,共4页
针对BP神经网络收敛速度慢和易陷入局部极小值等不足,通过改进遗传算法,显著提升遗传算法的全局寻优能力,进而优化BP神经网络初始权值和阈值。结合工程算例,采用正交法设计参数样本,利用边坡工程的有限元正分析模型计算出反演分析所需... 针对BP神经网络收敛速度慢和易陷入局部极小值等不足,通过改进遗传算法,显著提升遗传算法的全局寻优能力,进而优化BP神经网络初始权值和阈值。结合工程算例,采用正交法设计参数样本,利用边坡工程的有限元正分析模型计算出反演分析所需的样本,建立基于改进的GA-BP网络算法反分析模型,经过网络训练,得到符合实测效应量值的反演参数值,对比GA-BP网络算法和改进GA-BP网络算法的反分析模型结果可知,改进GA-BP网络算法反分析模型在解的稳定性和求解精度上均得到了较大提高。研究成果可供类似工程参考。 展开更多
关键词 改进的ga-bp网络算法 位移反分析 边坡工程 变位监测
原文传递
改进GA-BP神经网络评价算法及其应用 被引量:6
15
作者 高玉琴 张利昕 吴焕霞 《水利经济》 2012年第6期7-10,25,共5页
建立了用于水利工程管理现代化评价的改进GA-BP神经网络模型。该模型运用遗传算法优化改进BP神经网络的初始权重及阈值,具有快速学习和全局搜索能力,有效解决了BP神经网络容易陷入局部极小点和训练结果不稳定的问题。模型应用于泰州引... 建立了用于水利工程管理现代化评价的改进GA-BP神经网络模型。该模型运用遗传算法优化改进BP神经网络的初始权重及阈值,具有快速学习和全局搜索能力,有效解决了BP神经网络容易陷入局部极小点和训练结果不稳定的问题。模型应用于泰州引江河水利枢纽工程管理现代化水平评价,并与经典BP算法应用结果进行比较,结果证明了该方法的可靠性和合理性。 展开更多
关键词 水利工程 管理现代化 遗传算法 改进BP神经网络 评价算法
在线阅读 下载PDF
基于IGA-BP神经网络滚动轴承故障的诊断 被引量:2
16
作者 赵永满 梅卫江 王春林 《石河子大学学报(自然科学版)》 CAS 2010年第3期379-382,共4页
为提高滚动轴承故障模式识别技术的研究,基于IGA-BP神经网络的故障诊断原理,运用IGA对BP神经网络的权值与阈值进行调整和优化,利用小波包分解获得轴承振动信号的特征向量,进行了滚动轴承故障的诊断实验研究,对故障模式进行识别。结果表... 为提高滚动轴承故障模式识别技术的研究,基于IGA-BP神经网络的故障诊断原理,运用IGA对BP神经网络的权值与阈值进行调整和优化,利用小波包分解获得轴承振动信号的特征向量,进行了滚动轴承故障的诊断实验研究,对故障模式进行识别。结果表明,IGA-BP神经网络方法具有很强的故障识别能力,说明利用IGA-BP神经网络方法进行轴承故障诊断是可行的。 展开更多
关键词 滚动轴承 故障 诊断 BP神经网络 改进遗传算法
在线阅读 下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
17
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved BP algorithm optimization genetic algorithm learning speed
在线阅读 下载PDF
基于ICOA-BP神经网络的装备制造企业制造费用预测研究
18
作者 赵紫卿 张承贺 孙家坤 《制造业自动化》 2026年第1期63-73,共11页
制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群... 制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群,提高初始种群分布均匀性;引入海洋捕食者算法第一阶段搜索策略和温度自适应因子改进避暑阶段,增强全局搜索能力;结合Lévy飞行策略优化觅食阶段,平衡全局探索与局部开发;利用t分布扰动更新最优个体,避免算法陷入局部最优。之后,利用改进后的小龙虾算法对BP神经网络的初始阈值、权值进行优化,以提升模型的预测精度。最后,通过山东某化工装备制造企业换热器管束制造费用及相关数据为样本进行验证。结果表明:ICOA-BP神经网络预测模型的平均绝对误差(MAE)、均方根误差(RMSE)分别降低了至少20.95%和20.45%,决定系数(R2)提升了至少14.01%,证明了构建模型在制造费用预测精度上的优势。 展开更多
关键词 装备制造企业 制造费用预测 BP神经网络 改进小龙虾优化算法 换热器管束
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
19
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 BP神经网络 改进粒子群优化算法
在线阅读 下载PDF
基于IGA-BP神经网络的智能电能计量设备退化趋势研究 被引量:22
20
作者 马健 滕召胜 +2 位作者 邱伟 马丽莎 刘颉 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第11期123-131,共9页
电能计量设备可靠运行与否影响着电网边缘测量与电量计量准确性,为此本文提出一种基于参数优化BP神经网络的设备退化趋势分析方法。结合国网新疆高干热试验基地,及其智能电能计量设备实时运行基本误差数据,利用Spearman相关性分析方法,... 电能计量设备可靠运行与否影响着电网边缘测量与电量计量准确性,为此本文提出一种基于参数优化BP神经网络的设备退化趋势分析方法。结合国网新疆高干热试验基地,及其智能电能计量设备实时运行基本误差数据,利用Spearman相关性分析方法,提取影响智能电能计量设备基本误差值的主要环境应力;采用函数拟合插值(FFI)方法消除原始数据中缺失值对退化分析的影响,建立基于BP神经网络的智能电能计量设备退化研究模型;最后,引入改进遗传算法(IGA)优化BP神经网络参数,实现智能电能计量设备退化趋势的向后预测与更新。选取基地中不同型号的若干个智能电能计量设备进行多项实验,结果表明本文模型具有较高的预测能力,预测结果的平均均方根误差为0.0123,预测准确度最高可达90.2%。 展开更多
关键词 智能电能计量设备 退化趋势 BP神经网络 改进遗传算法
原文传递
上一页 1 2 90 下一页 到第
使用帮助 返回顶部