Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identificat...Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identification of multiple developmental stages of rice spikes into the detection of rice spikes of diverse maturity levels. The scales vary greatly in different growth and development stages because rice spikes are dense and small, posing challenges for their effective and accurate detection. We describe a rice spike detection model based on an improved faster regions with convolutional neural network(Faster R-CNN).The model incorporates the following optimization strategies: first, Inception_Res Net-v2 replaces VGG16 as a feature extraction network;second, a feature pyramid network(FPN) replaces single-scale feature maps to fuse with region proposal network(RPN);third, region of interest(Ro I) alignment replaces Ro I pooling, and distance-intersection over union(DIo U) is used as a standard for non-maximum suppression(NMS). The performance of the proposed model was compared with that of the original Faster R-CNN and YOLOv4 models. The mean average precision(m AP) of the rice spike detection model was92.47%, a substantial improvement on the original Faster R-CNN model(with 40.96% m AP) and 3.4%higher than that of the YOLOv4 model, experimentally indicating that the model is more accurate and reliable. The identification results of the model for the heading–flowering, milky maturity, and full maturity stages were within two days of the results of manual observation, fully meeting the needs of agricultural activities.展开更多
This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In ...This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease.展开更多
The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interes...The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest(ROI).The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration.Nevertheless,this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices.Thus,this study proposed a region-based convolutional network(Faster R-CNN)for the LV localization from short-axis cardiac MRI images using a region proposal network(RPN)integrated with deep feature classification and regression.Themodel was trained using images with corresponding bounding boxes(labels)around the LV,and various experiments were applied to select the appropriate layers and set the suitable hyper-parameters.The experimental findings showthat the proposed modelwas adequate,with accuracy,precision,recall,and F1 score values of 0.91,0.94,0.95,and 0.95,respectively.This model also allows the cropping of the detected area of LV,which is vital in reducing the computational cost and time during segmentation and classification procedures.Therefore,itwould be an ideal model and clinically applicable for diagnosing cardiac diseases.展开更多
X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of go...X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher.展开更多
In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenge...In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province (2019B020214005)Agricultural Research Project and Agricultural Technology Promotion Project of Guangdong (2021KJ383)。
文摘Spike development directly affects the yield and quality of rice. We describe an algorithm for automatically identifying multiple developmental stages of rice spikes(AI-MDSRS) that transforms the automatic identification of multiple developmental stages of rice spikes into the detection of rice spikes of diverse maturity levels. The scales vary greatly in different growth and development stages because rice spikes are dense and small, posing challenges for their effective and accurate detection. We describe a rice spike detection model based on an improved faster regions with convolutional neural network(Faster R-CNN).The model incorporates the following optimization strategies: first, Inception_Res Net-v2 replaces VGG16 as a feature extraction network;second, a feature pyramid network(FPN) replaces single-scale feature maps to fuse with region proposal network(RPN);third, region of interest(Ro I) alignment replaces Ro I pooling, and distance-intersection over union(DIo U) is used as a standard for non-maximum suppression(NMS). The performance of the proposed model was compared with that of the original Faster R-CNN and YOLOv4 models. The mean average precision(m AP) of the rice spike detection model was92.47%, a substantial improvement on the original Faster R-CNN model(with 40.96% m AP) and 3.4%higher than that of the YOLOv4 model, experimentally indicating that the model is more accurate and reliable. The identification results of the model for the heading–flowering, milky maturity, and full maturity stages were within two days of the results of manual observation, fully meeting the needs of agricultural activities.
基金This research was supported by the Honam University Research Fund,2021.
文摘This study aims to detect and prevent greening disease in citrus trees using a deep neural network.The process of collecting data on citrus greening disease is very difficult because the vector pests are too small.In this paper,since the amount of data collected for deep learning is insufficient,we intend to use the efficient feature extraction function of the neural network based on the Transformer algorithm.We want to use the Cascade Region-based Convolutional Neural Networks(Cascade R-CNN)Swin model,which is a mixture of the transformer model and Cascade R-CNN model to detect greening disease occurring in citrus.In this paper,we try to improve model safety by establishing a linear relationship between samples using Mixup and Cutmix algorithms,which are image processing-based data augmentation techniques.In addition,by using the ImageNet dataset,transfer learning,and stochastic weight averaging(SWA)methods,more accuracy can be obtained.This study compared the Faster Region-based Convolutional Neural Networks Residual Network101(Faster R-CNN ResNet101)model,Cascade Regionbased Convolutional Neural Networks Residual Network101(Cascade RCNN-ResNet101)model,and Cascade R-CNN Swin Model.As a result,the Faster R-CNN ResNet101 model came out as Average Precision(AP)(Intersection over Union(IoU)=0.5):88.2%,AP(IoU=0.75):62.8%,Recall:68.2%,and the Cascade R-CNN ResNet101 model was AP(IoU=0.5):91.5%,AP(IoU=0.75):67.2%,Recall:73.1%.Alternatively,the Cascade R-CNN Swin Model showed AP(IoU=0.5):94.9%,AP(IoU=0.75):79.8%and Recall:76.5%.Thus,the Cascade R-CNN Swin Model showed the best results for detecting citrus greening disease.
基金supported by the Ministry of Higher Education(MOHE)through the Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/TK0/UTHM/02/16)the Universiti Tun Hussein Onn Malaysia(UTHM)through an FRGS Research Grant(Vot K304).
文摘The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest(ROI).The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration.Nevertheless,this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices.Thus,this study proposed a region-based convolutional network(Faster R-CNN)for the LV localization from short-axis cardiac MRI images using a region proposal network(RPN)integrated with deep feature classification and regression.Themodel was trained using images with corresponding bounding boxes(labels)around the LV,and various experiments were applied to select the appropriate layers and set the suitable hyper-parameters.The experimental findings showthat the proposed modelwas adequate,with accuracy,precision,recall,and F1 score values of 0.91,0.94,0.95,and 0.95,respectively.This model also allows the cropping of the detected area of LV,which is vital in reducing the computational cost and time during segmentation and classification procedures.Therefore,itwould be an ideal model and clinically applicable for diagnosing cardiac diseases.
文摘X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment.In the case of inspection using X-ray scanning equipment,it is possible to identify the contents of goods,unauthorized transport,or hidden goods in real-time by-passing cargo through X-rays without opening it.In this paper,we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network(Cascade R-CNN)model,and the data used for learning consists of dangerous goods,storage media,firearms,and knives.In addition,to minimize the overfitting problem caused by the lack of data to be used for artificial intelligence(AI)training,data samples are increased by using the CP(copy-paste)algorithm on the existing data.It also solves the data labeling problem by mixing supervised and semi-supervised learning.The four comparative models to be used in this study are Faster Regionbased Convolutional Neural Networks Residual2 Network-101(Faster R-CNN_Res2Net-101)supervised learning,Cascade R-CNN_Res2Net-101_supervised learning,Cascade Region-based Convolutional Neural Networks Composite Backbone Network V2(CBNetV2)Network-101(Cascade R-CNN_CBNetV2Net-101)_supervised learning,and Cascade RCNN_CBNetV2-101_semi-supervised learning which are then compared and evaluated.As a result of comparing the performance of the four models in this paper,in case of Cascade R-CNN_CBNetV2-101_semi-supervised learning,Average Precision(AP)(Intersection over Union(IoU)=0.5):0.7%,AP(IoU=0.75):1.0%than supervised learning,Recall:0.8%higher.
文摘In some military application scenarios,Unmanned Aerial Vehicles(UAVs)need to perform missions with the assistance of on-board cameras when radar is not available and communication is interrupted,which brings challenges for UAV autonomous navigation and collision avoidance.In this paper,an improved deep-reinforcement-learning algorithm,Deep Q-Network with a Faster R-CNN model and a Data Deposit Mechanism(FRDDM-DQN),is proposed.A Faster R-CNN model(FR)is introduced and optimized to obtain the ability to extract obstacle information from images,and a new replay memory Data Deposit Mechanism(DDM)is designed to train an agent with a better performance.During training,a two-part training approach is used to reduce the time spent on training as well as retraining when the scenario changes.In order to verify the performance of the proposed method,a series of experiments,including training experiments,test experiments,and typical episodes experiments,is conducted in a 3D simulation environment.Experimental results show that the agent trained by the proposed FRDDM-DQN has the ability to navigate autonomously and avoid collisions,and performs better compared to the FRDQN,FR-DDQN,FR-Dueling DQN,YOLO-based YDDM-DQN,and original FR outputbased FR-ODQN.