Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search,...Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.展开更多
Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for...Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.展开更多
Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an ...Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an improved ant colony optimization(IACO) algorithm.Firstly,a problem domain describing buffer allocation is structured.Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line.On the basis of the descriptions mentioned above,combining with a two-opt strategy and an acceptance probability rule,an IACO algorithm is built to solve the BAP.Finally,the simulation experiments are designed to evaluate the proposed algorithm.The results indicate that the IACO algorithm is valid and practical.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, wh...This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.展开更多
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant...The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先...为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先,采用多因素启发函数,在启发函数中加入角度因子,增强路径的全局规划性;其次,为解决传统蚁群算法收敛速度慢的问题,引入了自适应挥发系数和动态权重系数;最后针对补苗路径规划背景下信息素复杂无序的问题,在信息素更新下加入边缘距离因子并设置信息素阈值,目的是减少路径规划时间,加快算法收敛。仿真结果表明,相比于传统优化算法,改进蚁群算法能有效优化补苗移栽路径。在试验条件128孔穴盘下,该模型的路径规划长度相比固定顺序法缩短14.65%,相比蚁群算法缩短6.76%,相比遗传算法缩短3.68%,相比克隆选择算法缩短1.01%。对比可知,改进蚁群算法更有利于补苗移栽路径规划,该模型可作为温室穴盘苗机械化补栽路径规划算法控制基础。展开更多
文摘Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.
基金the Science and Technology Cooperation Research and Development Project of Sichuan Provincial Academy and University(Grant No.2019YFSY0024)the Key Research and Development Program in Sichuan Province of China(Grant No.2019YFG0050)the Natural Science Foundation of Guangxi Province of China(Grant No.AD19245021).
文摘Support vehicles are part of the main body of airport ground operations,and their scheduling efficiency directly impacts flight delays.A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling.The model is based on the constraint relationship of the initial operation time,time window,and gate position distribution,which gives an improvement to the ant colony algorithm(ACO).The impacts of the improved ACO as used for support vehicle optimization are compared and analyzed.The results show that the scheduling scheme of refueling trucks based on the improved ACO can reduce flight delays caused by refueling operations by 56.87%,indicating the improved ACO can improve support vehicle scheduling.Besides,the improved ACO can jump out of local optima,which can balance the working time of refueling trucks.This research optimizes the scheduling scheme of support vehicles under the existing conditions of airports,which has practical significance to fully utilize ground service resources,improve the efficiency of airport ground operations,and effectively reduce flight delays caused by ground service support.
基金Supported by the National Natural Science Foundation of China(No.61273035,71471135)
文摘Buffer influences the performance of production lines greatly.To solve the buffer allocation problem(BAP) in serial production lines with unreliable machines effectively,an optimization method is proposed based on an improved ant colony optimization(IACO) algorithm.Firstly,a problem domain describing buffer allocation is structured.Then a mathematical programming model is established with an objective of maximizing throughput rate of the production line.On the basis of the descriptions mentioned above,combining with a two-opt strategy and an acceptance probability rule,an IACO algorithm is built to solve the BAP.Finally,the simulation experiments are designed to evaluate the proposed algorithm.The results indicate that the IACO algorithm is valid and practical.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金Supported by the National Natural Science Foun-dation of China (60403027) Natural Science Foundation of HubeiProvince (2005ABA258) the Opening Foundation of State KeyLaboratory of Software Engineering (SKLSE05-07)
文摘This paper describes a routing algorithm for risk scanning agents using ant colony algorithm in P2P(peerto peer) network. Every peer in the P2P network is capable of updating its routing table in a real-time way, which enables agents to dynamically and automatically select, according to current traffic condition of the network, the global optimal traversal path. An adjusting mechanism is given to adjust the routing table when peers join or leave. By means of exchanging pheromone intensity of part of paths, the algorithm provides agents with more choices as to which one to move and avoids prematurely reaching local optimal path. And parameters of the algorithm are determined by lots of simulation testing. And we also compare with other routing algorithms in unstructured P2P network in the end.
基金supported in part by the National Research Foundation of Korea (NRF-2021H1D3A2A01082705).
文摘The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
文摘为提高温室番茄穴盘苗补苗移栽的工作效率,对补苗移栽路径进行规划,以减少路径规划长度和运算时间,提高机械手补苗效率和缩短反应时间。提出一种基于改进蚁群算法(Improved ant colony optimization)的机械臂补苗移栽路径规划方法,首先,采用多因素启发函数,在启发函数中加入角度因子,增强路径的全局规划性;其次,为解决传统蚁群算法收敛速度慢的问题,引入了自适应挥发系数和动态权重系数;最后针对补苗路径规划背景下信息素复杂无序的问题,在信息素更新下加入边缘距离因子并设置信息素阈值,目的是减少路径规划时间,加快算法收敛。仿真结果表明,相比于传统优化算法,改进蚁群算法能有效优化补苗移栽路径。在试验条件128孔穴盘下,该模型的路径规划长度相比固定顺序法缩短14.65%,相比蚁群算法缩短6.76%,相比遗传算法缩短3.68%,相比克隆选择算法缩短1.01%。对比可知,改进蚁群算法更有利于补苗移栽路径规划,该模型可作为温室穴盘苗机械化补栽路径规划算法控制基础。