Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of...With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of the system,an energy management method based on a model predictive control(MPC)and dynamic programming(DP)algorithm is proposed.This method can reasonably distribute the energy of the battery,fuel cell,electrolyzer and external grid,and maximize the output of the distributed power supply while ensuring the power balance and cost optimization of the system.Based on an ultra-shortterm forecast,the output power of the photovoltaic array and the demand power of the system load are predicted.The offline global optimization of traditional dynamic programming is replaced by the repeated rolling optimization in a limited period of time to obtain power values of each unit in the energy storage system.Compared with the traditional DP,MILP-MPC and the logic based real-time management method,the proposed energy management method is proved to be feasible and effective.展开更多
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.
基金supported in part by the National Natural Science Foundation of China under Grant 52377123 and 51977181in part by the Natural Science Foundation of Sichuan Province under Grant 2022NSFSC0027in part by the Fok Ying-Tong Education Foundation of China under Grant 171104。
文摘With the increasing presence of intermittent energy resources in microgrids,it is difficult to precisely predict the output of renewable resources and their load demand.In order to realize the economical operations of the system,an energy management method based on a model predictive control(MPC)and dynamic programming(DP)algorithm is proposed.This method can reasonably distribute the energy of the battery,fuel cell,electrolyzer and external grid,and maximize the output of the distributed power supply while ensuring the power balance and cost optimization of the system.Based on an ultra-shortterm forecast,the output power of the photovoltaic array and the demand power of the system load are predicted.The offline global optimization of traditional dynamic programming is replaced by the repeated rolling optimization in a limited period of time to obtain power values of each unit in the energy storage system.Compared with the traditional DP,MILP-MPC and the logic based real-time management method,the proposed energy management method is proved to be feasible and effective.