期刊文献+
共找到991篇文章
< 1 2 50 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
2
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
在线阅读 下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
3
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
4
作者 Yi-Han Wang Hai-Feng Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
原文传递
Covid-19 Forecasting with Deep Learning-based Half-binomial Distribution Cat Swarm Optimization 被引量:1
5
作者 P.Renukadevi A.Rajiv Kannan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期629-645,共17页
About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing p... About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)epidemic.On governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this situation.Most researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these situations.In the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 cases.According to LSTM network data,the outbreak is expected tofinish by June 2020.However,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required results.The COVID-19 dataset has lower accuracy and a higher error rate in the existing system.The proposed method has been introduced to overcome the above-mentioned issues.For COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is presented.In this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize it.Optimum features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of classification.The Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO algorithm.It is used to select the essential features using the bestfitness function values.For a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected features.As demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy. 展开更多
关键词 Binomial distribution min-max normalization cat swarm optimization(cso) COVID-19 forecasting
暂未订购
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
6
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
7
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
基于ISCSO的智能电表误差和线损率联合评估模型
8
作者 余传祥 潘傲然 +2 位作者 毛文鹏 郭豪杰 余霖辉 《电力系统保护与控制》 北大核心 2025年第13期117-127,共11页
针对当前智能电表误差和线损率联合评估精度较低的问题,提出了一种基于改进沙猫群优化算法(improved sand cat swarm optimization algorithm, ISCSO)的智能电表误差和线损率联合评估模型。首先根据典型台区拓扑结构和电能量守恒定律确... 针对当前智能电表误差和线损率联合评估精度较低的问题,提出了一种基于改进沙猫群优化算法(improved sand cat swarm optimization algorithm, ISCSO)的智能电表误差和线损率联合评估模型。首先根据典型台区拓扑结构和电能量守恒定律确定了电表误差和线损率评估模型的适应度函数,并依据台区数据确定了参数范围。其次,采用变焦佳点集、威布尔最优值引导策略、蒲公英优化算法以及联想学习变异策略对沙猫群优化算法进行改进,并经测试函数验证了算法的优越性。最后,基于适应度函数和改进后的算法建立了智能电表误差和线损率联合评估模型,并通过算例验证了相比于带有遗忘因子递推最小二乘法的动态线损智能电表误差评估模型和智能电表误差与线损率联合评估的约束优化模型,所提方法在智能电表误差与线损率的评估精度上都有较大的提升。 展开更多
关键词 智能电表 线损率 沙猫群优化算法 误差评估
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
9
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
基于ISCSO-SVM的滚动轴承故障诊断方法
10
作者 陈权 王云霞 《南京工程学院学报(自然科学版)》 2025年第2期44-53,共10页
为了解决滚动轴承故障特征难以区分及轴承故障诊断效果差等问题,文章提出一种基于改进沙猫群优化算法(ISCSO)优化支持向量机(SVM)的滚动轴承故障诊断方法.采用小波包变换提取滚动轴承振动信号各频带的能量值特征,归一化后作为特征值输入... 为了解决滚动轴承故障特征难以区分及轴承故障诊断效果差等问题,文章提出一种基于改进沙猫群优化算法(ISCSO)优化支持向量机(SVM)的滚动轴承故障诊断方法.采用小波包变换提取滚动轴承振动信号各频带的能量值特征,归一化后作为特征值输入;针对SVM对惩罚因子和核函数参数的敏感性,引入Cubic混沌映射、螺旋搜索、麻雀警戒机制等策略来改进沙猫群优化算法,从而优化SVM的参数设置.将提取的特征值输入ISCSO-SVM进行模型训练并构建滚动轴承的故障诊断模型.试验结果表明,该方法能够有效识别滚动轴承的故障状态,在诊断模型中比其他优化算法表现出更高的准确率和稳定性. 展开更多
关键词 滚动轴承 故障诊断 改进沙猫群算法 支持向量机 小波包变换
在线阅读 下载PDF
基于ISCSO算法的燃气-蒸汽联合循环机组负荷对象模型辨识
11
作者 徐晓雯 康英伟 《河南科技大学学报(自然科学版)》 北大核心 2025年第6期49-58,I0004,共11页
建立准确的燃气-蒸汽联合循环机组负荷对象的数学模型是提升机组负荷控制系统性能的重要前提。针对传统辨识方法在辨识精度和收敛速度方面存在的不足,提出一种基于改进沙猫群优化(ISCSO)算法的模型辨识方法。首先,利用Logistic混沌映射... 建立准确的燃气-蒸汽联合循环机组负荷对象的数学模型是提升机组负荷控制系统性能的重要前提。针对传统辨识方法在辨识精度和收敛速度方面存在的不足,提出一种基于改进沙猫群优化(ISCSO)算法的模型辨识方法。首先,利用Logistic混沌映射来改善初始种群;将灵敏度参数由线性变化调整为余弦型变化;引入差分进化变异机制以及高斯扰动改进方法,在提高寻优效率的同时有效避免陷入局部最优解;然后,采用ISCSO算法对模型参数进行寻优求解,得到模型的最优参数值;最后,采用开环阶跃实验得到的燃气-蒸汽联合循环机组312.06 MW负荷点处的数据与ISCSO算法和SCSO等算法的辨识结果进行对比验证。通过消融实验,验证了该算法中改进策略的有效性。研究结果表明:相较于对比算法,所提算法能建立较为准确的负荷对象模型,ISCSO辨识模型的平均绝对百分误差与均方根误差均最小,具有更好的收敛性能,为模型辨识提供了新的方法。 展开更多
关键词 燃气-蒸汽联合循环机组 负荷对象 模型辨识 改进沙猫群优化算法
在线阅读 下载PDF
基于CSO-RVM的瓦斯涌出量预测模型研究 被引量:4
12
作者 付华 任仁 +2 位作者 王雨虹 王馨蕊 单敏柱 《传感技术学报》 CAS CSCD 北大核心 2015年第10期1508-1512,共5页
为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行... 为了实时监测和精准预测煤矿回采工作面绝对瓦斯涌出量,提出猫群算法(CSO)优化相关支持向量机(RVM)的绝对瓦斯涌出量预测方法。相关向量机的组合核函数可实现多特征空间的信息融合,为有限样本、高维数瓦斯涌出量预测建模问题提供一种行之有效的方法。并用CSO算法对RVM瓦斯涌出量预测模型的核函数权重p和高斯核参数σ快速寻优。利用矿井无线传感器网络检测到的各项历史数据试验。结果表明,相比BP、SVM算法,该耦合模型有效提高了预测精度,具有更好的泛化能力,为矿井瓦斯预测提供理论支持。 展开更多
关键词 瓦斯涌出量预测 猫群算法(cso) 相关支持向量机(RVM) 组合核函数 信息融合
在线阅读 下载PDF
基于ISCSO-LSTM模型的刀具磨损预测 被引量:8
13
作者 肖斌 李炎炎 +1 位作者 段增峰 陈领 《组合机床与自动化加工技术》 北大核心 2023年第6期102-105,110,共5页
为进一步提高刀具磨损量预测模型的准确度,实现对刀具加工过程的在线监控。提出一种基于改进的沙猫算法(improved sand cat swarm optimization,ISCSO)和长短期记忆神经网络(long short-term memory,LSTM)的刀具磨损量预测模型。利用刀... 为进一步提高刀具磨损量预测模型的准确度,实现对刀具加工过程的在线监控。提出一种基于改进的沙猫算法(improved sand cat swarm optimization,ISCSO)和长短期记忆神经网络(long short-term memory,LSTM)的刀具磨损量预测模型。利用刀具的加速度振动信号为输入样本,应用长短期记忆神经网络对铣刀磨损值进行预测。针对沙猫算法收敛精度低等问题,引入混沌映射、非线性收敛因子和对立点检测机制,利用改进的沙猫算法优化长短期记忆神经网络的参数。实验结果表明ISCSO-LSTM模型的刀具磨损预测精度明显高于LSTM模型。 展开更多
关键词 刀具磨损 沙猫优化算法 长短期记忆网络 在线监测
在线阅读 下载PDF
基于CSO-AUKF的锂电池SOC估算方法 被引量:2
14
作者 吴华伟 洪强 +1 位作者 陈运星 马毓博 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页
电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨... 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 展开更多
关键词 车辆工程 锂电池汽车 荷电状态(SOC) 猫群(cso)算法 自适应无迹卡尔曼滤波(AUKF)算法
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
15
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 BP神经网络 改进粒子群优化算法
在线阅读 下载PDF
CSO-PID算法在空压机控制系统中的应用 被引量:10
16
作者 吕晨悦 施一萍 +2 位作者 刘瑾 张金立 程宗政 《传感器与微系统》 CSCD 北大核心 2021年第1期157-160,共4页
针对普通空压机普遍存在的耗能过高且控制效果不佳的问题,在研究比例-积分-微分(PID)算法和鸡群算法的基础上,对空压机的控制算法进行了改进,利用鸡群算法对PID的三个参数进行整定,并将这种智能算法应用到PLC控制器中。仿真实验和实际... 针对普通空压机普遍存在的耗能过高且控制效果不佳的问题,在研究比例-积分-微分(PID)算法和鸡群算法的基础上,对空压机的控制算法进行了改进,利用鸡群算法对PID的三个参数进行整定,并将这种智能算法应用到PLC控制器中。仿真实验和实际测试表明:该智能算法不仅实现了对空压机系统的有效控制,而且增强了系统的抗干扰能力,节能效果更佳。 展开更多
关键词 空压机 比例-积分-微分(PID)算法 鸡群优化算法
在线阅读 下载PDF
基于ICSO的DGPS整周模糊度的求解方法 被引量:3
17
作者 欧阳利 黄采伦 《全球定位系统》 CSCD 2020年第3期41-47,62,共8页
针对差分全球定位系统(DGPS)模糊度解算过程中效率低,搜索慢的问题,对鸡群优化算法(CSO)进行适应性改进,并将改进后的鸡群优化算法(ICSO)应用到整周模糊度的快速解算中,利用卡尔曼滤波求出双差模糊度的浮点解和协方差矩阵,采用Lenstra-L... 针对差分全球定位系统(DGPS)模糊度解算过程中效率低,搜索慢的问题,对鸡群优化算法(CSO)进行适应性改进,并将改进后的鸡群优化算法(ICSO)应用到整周模糊度的快速解算中,利用卡尔曼滤波求出双差模糊度的浮点解和协方差矩阵,采用Lenstra-Lenstra-Lovasz(LLL)降相关算法对模糊度的浮点解和方差协方差矩阵进行降相关处理,以降低模糊度各分量之间的相关性,在基线长度固定的情况下,利用ICSO搜索整周模糊度的最优解.采用经典算例进行仿真,仿真结果表明,与已有文献相比在整周模糊度的解算过程中改进的鸡群优化算法能有效提高搜索速度和求解成功率. 展开更多
关键词 差分全球定位系统 改进鸡群优化算法 整周模糊度 卡尔曼滤波 降相关算法
在线阅读 下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:19
18
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
Interruptible Load Scheduling Model Based on an Improved Chicken Swarm Optimization Algorithm 被引量:12
19
作者 Jinsong Wang Fan Zhang +2 位作者 Huanan Liu Jianyong Ding Ciwei Gao 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期232-240,共9页
With the continuous growth of the tertiary industry and residential loads,balancing the power supply and consumption during peak demand time has become a critical issue.Some studies try to alleviate peak load by incre... With the continuous growth of the tertiary industry and residential loads,balancing the power supply and consumption during peak demand time has become a critical issue.Some studies try to alleviate peak load by increasing power generation on the supply side.Due to the short duration of peak load,this may cause redundant installation capacity.Alternatively,others attempt to shave peak demand by installing energy storage facilities.However,the aforementioned research did not consider interruptible load regulation when optimizing system operations.In fact,regulating interruptible load has great potential for reducing system peak load.In this paper,an interruptible load scheduling model considering the user subsidy rate is first proposed to reduce system peak load and operational costs.This model has fully addressed the constraints of minimum daily load reduction and user interruption load time.After that,by taking a community in Shanghai as an example,the improved chicken swarm optimization algorithm is applied to solve the interruptible load scheduling scheme.Finally,the simulation results validate the efficacy of the proposed optimization algorithm and indicate the significant advantages of the proposed model in alleviating the peak load and reducing operational costs. 展开更多
关键词 Demand response improved Chicken swarm optimization algorithm interruptible load scheduling model peak load user subsidy rate
原文传递
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
20
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部