The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were ...The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.展开更多
PU dispersion was chosen as an impregnating agent to produce leather-like sheet on spun-laced nonwoven.Three typical coagulating processes were studied.It was found that the best coagulating process for the chosen PUd...PU dispersion was chosen as an impregnating agent to produce leather-like sheet on spun-laced nonwoven.Three typical coagulating processes were studied.It was found that the best coagulating process for the chosen PUdispersion to get the leather-like sheet was coagulation in a sodium chloride solution.The detailed study of coagu-lating processes in sodium chloride solution was carriedout and optimal condition was obtained.Some experi-mental results were elucidated.Keywords:PU dispersion,coagulating, impregnating,ar-tificial leather,spun-laced nonwoven.展开更多
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change...We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.展开更多
Two different Mn-Ce-O_(x)/TiO_(2) catalysts were prepared by ordinary impregnation(denoted as MCT) and citric acid assisted impregnation(denoted as MCT-CA) methods,respectively.Excellent NOxremoval is achieved over MC...Two different Mn-Ce-O_(x)/TiO_(2) catalysts were prepared by ordinary impregnation(denoted as MCT) and citric acid assisted impregnation(denoted as MCT-CA) methods,respectively.Excellent NOxremoval is achieved over MCT-CA for selective catalytic reduction with NH3(NH_(3)-SCR),and 100% NOxconversion is obtained at 125℃ under weight hour space velocity(WHSV) of 80000 mL/(gcat·h).Particularly,100% NOxis converted on MCT-CA in the presence of 10 vol% H2O at 175℃.As H2O and SO2coexist in the reaction system for 9 h,NO_(x) conversion can still be maintained>90%,much higher than that(22%) of MCT.A series of characterization results indicates that MCT-CA exhibits a larger BET specific surface area,pore volume,and pore size,which enhances the dispersion of Mn and Ce oxides and promotes the rapid adsorption of reactants and desorption of products.Additionally,MCT-CA possesses more Mn^(4+),Ce^(3+),chemisorbed oxygen species,and stronger reducibility,facilitating the co nversion of NO to NO_(2).Specially,the amount of active NH_(3) species and active nitrate species on MCT-CA is much more than that over MCT,The combined effect of the aforementioned factors devotes to the excellent low-temperature SCR performance and tolerance to H2O/SO2over MCT-CA.展开更多
Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent material...Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.展开更多
Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments suc...Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments such as wound dressings,hyperbaric oxygen therapy,and phototherapy have been employed to manage these wounds.Low-level light therapy has emerged as an effective,noninvasive,and painless therapeutic approach for wound management.However,the bulkiness of traditional light sources and the need for frequent clinic visits have limited its widespread adoption.We have developed a wearable,flexible light-emitting bandage with cyanobacterial impregnation(LEB@Cyan).The bioactive bandage is designed to provide sustained oxygen generation and robust photobiomodulation,promoting keratinocyte migration,fibroblast proliferation,and angiogenesis.This addresses the hypoxic conditions and enhances bioenergetic supply to accelerate the healing process of diabetic wounds.In detail,the wound area of diabetic rats treated with LEB@Cyan showed significant reductions of 74.76%and 96.32%compared with that of LEB-treated diabetic rats and untreated diabetic rats,respectively.Such self-oxygenated wearable light-emitting fabric holds great promise for future clinical and commercial applications,potentially revolutionizing the management of chronic diabetic wounds.展开更多
Ethylene(C_(2)H_(4))is a core raw material for the petrochemical industry.It is of economic and environmental significance to use C_(2)H_(6)as the fuel and proton-conducting solid oxide fuel cells(P-SOFC)as the reacto...Ethylene(C_(2)H_(4))is a core raw material for the petrochemical industry.It is of economic and environmental significance to use C_(2)H_(6)as the fuel and proton-conducting solid oxide fuel cells(P-SOFC)as the reactor to co-generate electricity and C_(2)H_(4).However,the large-sized Ni particles in the conventional Nicermet anode directly crack C_(2)H_(6);and oxide materials with a mild capability of breaking C-C bonds are generally limited to electrolyte-supported structures with high ohmic impedance.This research for the first time constructs an anode-supported cell using BZCY as the porous scaffold and impregnated double perovskite(PrBa)_(0.95)(Fe_(0.8)Ni_(0.2))_(1.8)Mo_(0.2)O_(6-δ)(PBFNM0.2)as the anode electrocatalysis.FeNi3 nanoparticles exsolve from PBFNM0.2 in H_(2) and uniformly distribute on the surface of perovskite substrate,acting as an active component for C_(2)H_(6)dehydrogenation and electrochemical performance enhancement.The cell with 30 wt%PBFNM0.2 impregnated anode showing a high power density of 508 and 386mW/cm^(2) with H_(2) and C_(2)H_(6)fuels,respectively;high C_(2)H_(6)conversion of 50.9%,C_(2)H_(4)selectivity of 92.1%,and C_(2)H_(4)yield of 46.9%are achieved at 750℃and 700mA/cm^(2),which outperforms all previously electrolyte-supported cells for co-generated electricity and ethylene.Moreover,the cell demonstrated excellent recoverability throughout three dehydrogenation-regeneration cycles.This work provides a practical way with broad application potential to create a novel anode-supported cell efficiently realizing the co-generation of electricity and C_(2)H_(4)from C_(2)H_(6).展开更多
The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance...The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.展开更多
The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single react...The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single reactor,thus effectively reducing the cost and operational difficulties associated with flue gas treatment.In this study,Mn-Ce-Sm-Sn(MCSS)catalysts were prepared and loaded onto hightemperature resistant polyimide(P84)filter through ultrasonic impregnation to create composite catalytic filter.The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95%within the temperature range of 160-260℃,with a chlorobenzene T_(90)value of 230℃.The ultrasonic impregnation method effectively loaded the catalyst onto the filter,ensuring high dispersion both on the surface and inside the filter.This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter.Additionally,increasing the catalyst loading leads to a gradual decrease in permeability,an increase in pressure drops and the long residence time of the flue gas,thereby improving catalytic activity.Compared to ordinary impregnation methods,ultrasonic impregnation improves the bonding strength between the catalyst and filter,as well as the permeability of the composite catalytic filter under the same loading conditions.Overall,this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.展开更多
The impregnation method for preparing catalysts often faces challenges such as prolonged preparation times and poor dispersion of active components due to the limited mobility of the impregnation liquid.The rotating p...The impregnation method for preparing catalysts often faces challenges such as prolonged preparation times and poor dispersion of active components due to the limited mobility of the impregnation liquid.The rotating packed bed(RPB)can break the precursor solution into fine droplets,enabling dynamic impregnation of active components onto the surface of activated carbon.This approach facilitates the uniform distribution of active components on the carrier and enhances the stability and performance of the catalyst.In this study,activated carbon catalysts were prepared using high-gravity technology.It was found that the preparation time for Co-MnO_(x)/GAC using the RPB method was reduced by 98%,the catalytic activity increased by 6.62%,and the loadings of active components increased by 13%and 17%,the catalytic activity remained stable after five cycles,with a significantly lower rate of metal dissolution.A suite of complementary analytical techniques demonstrates that Co-MnO_(x)/GAC(RPB)has higher homogeneity and dispersion.X-ray photoelectron spectroscopy(XPS)results indicate that Co(II)and Mn(IV)/Mn(III)are the primary active sites during the catalytic decomposition of ozone,elucidating the mechanism of synergistic catalytic ozonation by dual-active components.Finally,electron paramagnetic resonance(EPR)confirmed that hydroxyl radicals($OH)were the predominant reactive species in the reaction.展开更多
Instead of the traditional linear model of taking,making,and disposing,the circular bio-economy promotes a regenerative approach.Although there is potential to create valuable products like betulin,lupeol,and suberini...Instead of the traditional linear model of taking,making,and disposing,the circular bio-economy promotes a regenerative approach.Although there is potential to create valuable products like betulin,lupeol,and suberinic acids(SA)from outer birch bark,many industries,such as plywood and pulp,often choose to incinerate substan-tial amounts of leftover birch bark to meet their energy needs.This highlights the importance of obtaining valu-able products from wood.The objective of this study was to examine various fractions of SA and assess their potential for wood impregnation.The fractions included SA potassium salts in ethanol(SAK-EtOH)and water(SAK-H2O),SA suspension in water(SAS-H2O)and dried SA,which was subsequently diluted in ethanol(DSA-EtOH).There is significant potential for utilizing SA in wood treatment formulations as a sustainable alternative to harmful petroleum-derived chemicals.This approach not only addresses environmental concerns but also enhances the functionality of wood in construction applications,such as improving impregnation for moisture and fungal protection.Among the solutions tested,the ethanol solution of SA,specifically DSA-EtOH,showed the highest weight percent gain(WPG)and the greatest leaching resistance.GPC analysis showed that SA salts in ethanol(SAK-EtOH)and water(SAK-H2O)predominantly consist of low molecular fractions and each process(acidification and drying)reduces the low molecular content in the sample.This suggests that SA polymerizes after drying,making it necessary to dissolve it in ethanol to meet the requirements for impregnation.Further opti-mization,including adjustments in the concentration of the SA ethanol solution and the curing temperature,is essential to identify the optimal conditions for more in-depth impregnation studies.展开更多
In Xinjiang,China,Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures.To mitigate this problem,oil-free a...In Xinjiang,China,Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures.To mitigate this problem,oil-free and explosion-proof epoxy resin-impregnated paper(ERIP)bushings are recommended as replacements.This study develops a multi-physics(electric-thermal-fluid)coupling model for 750 kV high voltage reactors ERIP bushings.The model aims to comprehensively assess their thermal and electrical performance under extreme ambient temperatures ranging from−40℃ to 90℃ and oil temperatures varying from−10℃ to 90℃.The results demonstrate that the bushing temperature rises consistently with increases in ambient temperature.Additionally,the location of the hottest point on the conductive rod exhibits an upward shift as the ambient temperature climbs.Significantly,when a temperature difference exists between the oil and the external environment,this upward movement remains relatively constrained.Even when the external temperature increases from−40℃ to 80℃,the hottest point shifts upward only 2457 mm.Conversely,in the absence of a temperature difference between the oil and external environment,a modest 10℃ increase in ambient temperature(from 80℃ to 90℃)triggers a substantial 11,356 mm upward displacement of the hottest point.Moreover,this study reveals that the electric field distribution within the bushings remains largely unaffected by environmental temperature changes.展开更多
Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hy...Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.展开更多
Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-o...Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-oil,biochar,and ash quality and quantity were characterized as a function of the immersion of K_(2)CO_(3),atmosphere type,blend ratio,and temperature.Compared to the mono-pyrolysis of TDS,its co-pyrolysis performance with CMR(the comprehensive performance index(CPI))significantly improved by 33.9%in the N_(2)atmosphere and 33.2%in the CO_(2)atmosphere.The impregnation catalyzed the co-pyrolysis at 370℃,reduced its activation energy by 77.3 kJ/mol in the N_(2)atmosphere and 134.6 kJ/mol in the CO_(2)atmosphere,and enriched the degree of coke gasification by 44.25%in the CO_(2)atmosphere.The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds,its catalytic and secondary products,and its bio-oil yield by 66.19%.Its bio-oils mainly contained olefins,aromatic structural substances,and alcohols.The immersion of K_(2)CO_(3)improved the aromaticity of the copyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO_(2)to form magnesium-silicate.The co-pyrolytic biochar surfaces mainly included-OH,-CH_(2),C=C,and Si-O-Si.The main phases in the co-pyrolytic ash included Ca_(5)(PO_(4))_(3)(OH),Al_(2)O_(3),and magnesium-silicate.展开更多
High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor ...High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.展开更多
Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a...Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.展开更多
To expand the application of multi-layer graphene in water-based systems, modified multi-layer graphene was prepared by vacuum impregnation with silica sol and carbon-embedded heat treatment at 300, 500 or 700 ℃ for ...To expand the application of multi-layer graphene in water-based systems, modified multi-layer graphene was prepared by vacuum impregnation with silica sol and carbon-embedded heat treatment at 300, 500 or 700 ℃ for 3 h. The phase composition, microstructure and wettability of the modified multi-layer graphene heat treated at different temperatures were studied. The results show that the water wettability of the modified multi-layer graphene is improved after vacuum impregnation with silica sol and carbon-embedded heat treatment;the optimum heat treatment temperature is 300 ℃, and the modified multi-layer graphene has the water wetting angle of 64.7°.展开更多
A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations w...A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate.展开更多
基金supported by the National Key Basic Research Program of China(973 Program,2012CB224802)the SINOPEC project(No.114013)
文摘The molecular structures of metal precursors in the impregnating solution were designed so as to prepare efficient Ni Mo/Al_2O_3 hydrodesulfurization(HDS) catalysts. At first, five typical impregnating solutions were designed; the existing metal precursors, such as [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species in the solutions were confirmed by laser Raman spectroscopy(LRS). The UV-Vis spectra results indicated that the solutions containing both phosphoric acid and citric acid could change the existing form of nickel species. Five corresponding Ni Mo/Al_2O_3 catalysts were prepared by the incipient wetness impregnation method. The LRS analysis results of dried catalysts showed that the above metal precursors could be partly retained on alumina support after impregnation and drying, although the interface reaction between different metal precursors and alumina support unavoidably took place. Then the catalysts were sulfided and characterized by N2 physisorption, TEM and XPS analyses. The results showed that different metal precursors in impregnating solution could mainly result in the difference in both the morphology of(Ni)Mo S2 slabs and the promoting effect of Ni species. The catalyst prepared mainly with [P2Mo5O23]^(6-)-like species used as precursors exhibited worse dispersion of(Ni)Mo S2 slabs and lower ratio of Ni–Mo–S active phases than the one with [Mo4(citrate)2O11]^(4-)-like species. Promisingly, the catalyst prepared with co-existing [Mo4(citrate)2O11]^(4-)-like, [P2Mo18O62]^(6-)-like and [P2Mo5O23]^(6-)-like species showed better hydrodesulfurization activity for 4,6-DMDBT thanks to its more well-dispersed Ni–Mo–S active phases.
文摘PU dispersion was chosen as an impregnating agent to produce leather-like sheet on spun-laced nonwoven.Three typical coagulating processes were studied.It was found that the best coagulating process for the chosen PUdispersion to get the leather-like sheet was coagulation in a sodium chloride solution.The detailed study of coagu-lating processes in sodium chloride solution was carriedout and optimal condition was obtained.Some experi-mental results were elucidated.Keywords:PU dispersion,coagulating, impregnating,ar-tificial leather,spun-laced nonwoven.
基金Funded by Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.
基金the Alliance Project of Shanghai City in China(LM201641)。
文摘Two different Mn-Ce-O_(x)/TiO_(2) catalysts were prepared by ordinary impregnation(denoted as MCT) and citric acid assisted impregnation(denoted as MCT-CA) methods,respectively.Excellent NOxremoval is achieved over MCT-CA for selective catalytic reduction with NH3(NH_(3)-SCR),and 100% NOxconversion is obtained at 125℃ under weight hour space velocity(WHSV) of 80000 mL/(gcat·h).Particularly,100% NOxis converted on MCT-CA in the presence of 10 vol% H2O at 175℃.As H2O and SO2coexist in the reaction system for 9 h,NO_(x) conversion can still be maintained>90%,much higher than that(22%) of MCT.A series of characterization results indicates that MCT-CA exhibits a larger BET specific surface area,pore volume,and pore size,which enhances the dispersion of Mn and Ce oxides and promotes the rapid adsorption of reactants and desorption of products.Additionally,MCT-CA possesses more Mn^(4+),Ce^(3+),chemisorbed oxygen species,and stronger reducibility,facilitating the co nversion of NO to NO_(2).Specially,the amount of active NH_(3) species and active nitrate species on MCT-CA is much more than that over MCT,The combined effect of the aforementioned factors devotes to the excellent low-temperature SCR performance and tolerance to H2O/SO2over MCT-CA.
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
基金supported by Shanxi Provincial Key Research and Development Project(202102090301026)Graduate Education Innovation Project of Taiyuan University of Science and Technology(SY2023024)。
文摘Currently,the solid adsorbents with porous structure have been widely applied in CO_(2)capture.However,the unmodified MgO-ZrO_(2)adsorbents appeared to be low adsorption capacity of CO_(2).The solid adsorbent materials were successfully synthesized by loading TEPA onto the pore MgO/ZrO_(2)carriers in the paper.The pore structure and surface characteristic of the samples were analyzed by using XRD,BET,FT-IR and SEM.The adsorbent materials exhibited microcrystalline state,and the crystallinity of all samples gradually decreased as the increase of TEPA content.The pore structure analysis indicated that the modification of MgO-ZrO_(2)adsorbents with TEPA led to the decrease of the specific surface areas,but the narrow micro-mesopore size distributions ranging from 1.8-12 nm in the adsorbents still were maintained.FT-IR spectrum results further verified the successful loading of TEPA.The adsorption capacity of the adsorbents for CO_(2)were tested by using an adsorption apparatus equipped with gas chromatography.The results indicated that when the TEPA loading reached 50%,the sample exhibited the maximum adsorption value for CO_(2),reaching 4.07 mmol/g under the operation condition of 75℃and atmospheric pressure.This result could be assigned to not only the base active sites but also the coexistence of both micropore and mesopore in the adsorbent.After three cycles tests for CO_(2)capture,the adsorption value of the sample for CO_(2)can also reached 95%of its original adsorption capacity,which verified the excellent cyclic operation stability.
基金supported by the National Natural Science Foundation of China[Grant Nos.52375414(L.K.)and 82372121(M.H.)]the Shanghai Science&Technology Committee Innovation Grant[Grant No.23ZR1404200(L.K.)]the Yiwu Research Institute of Fudan University(L.K.),and the Shanghai Rising-Star Program[Grant No.23QA1409500 H.)].
文摘Chronic diabetic wounds,a common and severe complication of diabetes,are characterized by their inability to heal due to impaired blood and oxygen supply.In addition to glycemic control,various clinical treatments such as wound dressings,hyperbaric oxygen therapy,and phototherapy have been employed to manage these wounds.Low-level light therapy has emerged as an effective,noninvasive,and painless therapeutic approach for wound management.However,the bulkiness of traditional light sources and the need for frequent clinic visits have limited its widespread adoption.We have developed a wearable,flexible light-emitting bandage with cyanobacterial impregnation(LEB@Cyan).The bioactive bandage is designed to provide sustained oxygen generation and robust photobiomodulation,promoting keratinocyte migration,fibroblast proliferation,and angiogenesis.This addresses the hypoxic conditions and enhances bioenergetic supply to accelerate the healing process of diabetic wounds.In detail,the wound area of diabetic rats treated with LEB@Cyan showed significant reductions of 74.76%and 96.32%compared with that of LEB-treated diabetic rats and untreated diabetic rats,respectively.Such self-oxygenated wearable light-emitting fabric holds great promise for future clinical and commercial applications,potentially revolutionizing the management of chronic diabetic wounds.
基金financially supported by the National Natural Science Foundation of China(Nos.52072134,52272205)Hubei Province(Nos.2021BCA149,2021CFA072,2022BAA087)the special fund for Science and Technology Innovation Teams of Shanxi Province(No.202304051001007)。
文摘Ethylene(C_(2)H_(4))is a core raw material for the petrochemical industry.It is of economic and environmental significance to use C_(2)H_(6)as the fuel and proton-conducting solid oxide fuel cells(P-SOFC)as the reactor to co-generate electricity and C_(2)H_(4).However,the large-sized Ni particles in the conventional Nicermet anode directly crack C_(2)H_(6);and oxide materials with a mild capability of breaking C-C bonds are generally limited to electrolyte-supported structures with high ohmic impedance.This research for the first time constructs an anode-supported cell using BZCY as the porous scaffold and impregnated double perovskite(PrBa)_(0.95)(Fe_(0.8)Ni_(0.2))_(1.8)Mo_(0.2)O_(6-δ)(PBFNM0.2)as the anode electrocatalysis.FeNi3 nanoparticles exsolve from PBFNM0.2 in H_(2) and uniformly distribute on the surface of perovskite substrate,acting as an active component for C_(2)H_(6)dehydrogenation and electrochemical performance enhancement.The cell with 30 wt%PBFNM0.2 impregnated anode showing a high power density of 508 and 386mW/cm^(2) with H_(2) and C_(2)H_(6)fuels,respectively;high C_(2)H_(6)conversion of 50.9%,C_(2)H_(4)selectivity of 92.1%,and C_(2)H_(4)yield of 46.9%are achieved at 750℃and 700mA/cm^(2),which outperforms all previously electrolyte-supported cells for co-generated electricity and ethylene.Moreover,the cell demonstrated excellent recoverability throughout three dehydrogenation-regeneration cycles.This work provides a practical way with broad application potential to create a novel anode-supported cell efficiently realizing the co-generation of electricity and C_(2)H_(4)from C_(2)H_(6).
基金PROTEXTWOOD (ID 2202-102) funded through LabEx AGRO ANR-10-LABX-0001-01 (under ISiteUniversité de Montpellier framework)the project PANTHER2-Guyane funded through AgenceNationale de la Recherche (ANR-22-CE43-0019)+2 种基金“Investissement d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01)supported by the FEDER (European Regional Development Fund)research project “EcovaloBois” (Project number: GY0015430)by the CNRS peps INSIS2018 research project “GuyavaloFibres”.
文摘The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.
基金Project supported by the National Key Research and Development Program of China(2021YFB3500600,2021YFB3500605)Natural Science Foundation of Jiangsu Province(BK20220365)+5 种基金Key R&D Program of Jiangsu Province(BE2022142)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB610002)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1419)Science and Technology Plan of Yangzhou(YZ2022030,YZ2023020)the State Key Laboratory of Clean and Efficient Coal-fired Power Generation and Pollution Control(D2022FK098)。
文摘The integration of surface filtration and catalytic decomposition functions in catalytic bags enables the synergistic removal of multiple pollutants(such as dust,nitrogen oxide,acid gases,and dioxins)in a single reactor,thus effectively reducing the cost and operational difficulties associated with flue gas treatment.In this study,Mn-Ce-Sm-Sn(MCSS)catalysts were prepared and loaded onto hightemperature resistant polyimide(P84)filter through ultrasonic impregnation to create composite catalytic filter.The results demonstrate that the NO conversion rates of the composite catalytic filter consistently achieve above 95%within the temperature range of 160-260℃,with a chlorobenzene T_(90)value of 230℃.The ultrasonic impregnation method effectively loaded the catalyst onto the filter,ensuring high dispersion both on the surface and inside the filter.This increased exposure of catalyst active sites enhances the catalytic activity of the composite catalytic filter.Additionally,increasing the catalyst loading leads to a gradual decrease in permeability,an increase in pressure drops and the long residence time of the flue gas,thereby improving catalytic activity.Compared to ordinary impregnation methods,ultrasonic impregnation improves the bonding strength between the catalyst and filter,as well as the permeability of the composite catalytic filter under the same loading conditions.Overall,this study presents a novel approach to prepare composite catalytic filter for the simultaneous removal of NO and chlorobenzene at low temperatures.
基金supported by the National Natural Science Foundation of China(U23A20676)Key Research&Development Plan of Shanxi Province(202202040201011)+3 种基金Shanxi Scholarship Council of China(2023-128)Small and medium-sized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)the Graduate Student Innovation Project of Shanxi Province(2023SJ205)Local Funds for Science and Technology Development Guided by the Central Finance(YDZJSX20231A030).
文摘The impregnation method for preparing catalysts often faces challenges such as prolonged preparation times and poor dispersion of active components due to the limited mobility of the impregnation liquid.The rotating packed bed(RPB)can break the precursor solution into fine droplets,enabling dynamic impregnation of active components onto the surface of activated carbon.This approach facilitates the uniform distribution of active components on the carrier and enhances the stability and performance of the catalyst.In this study,activated carbon catalysts were prepared using high-gravity technology.It was found that the preparation time for Co-MnO_(x)/GAC using the RPB method was reduced by 98%,the catalytic activity increased by 6.62%,and the loadings of active components increased by 13%and 17%,the catalytic activity remained stable after five cycles,with a significantly lower rate of metal dissolution.A suite of complementary analytical techniques demonstrates that Co-MnO_(x)/GAC(RPB)has higher homogeneity and dispersion.X-ray photoelectron spectroscopy(XPS)results indicate that Co(II)and Mn(IV)/Mn(III)are the primary active sites during the catalytic decomposition of ozone,elucidating the mechanism of synergistic catalytic ozonation by dual-active components.Finally,electron paramagnetic resonance(EPR)confirmed that hydroxyl radicals($OH)were the predominant reactive species in the reaction.
基金supported according to contract No.5.1.1.2.i.0/1/22/A/CFLA/007 between“Forest Sector Competence Centre of Latvia”Ltd.the Central Finance and Contracting Agency which dated 20th January of 2023.
文摘Instead of the traditional linear model of taking,making,and disposing,the circular bio-economy promotes a regenerative approach.Although there is potential to create valuable products like betulin,lupeol,and suberinic acids(SA)from outer birch bark,many industries,such as plywood and pulp,often choose to incinerate substan-tial amounts of leftover birch bark to meet their energy needs.This highlights the importance of obtaining valu-able products from wood.The objective of this study was to examine various fractions of SA and assess their potential for wood impregnation.The fractions included SA potassium salts in ethanol(SAK-EtOH)and water(SAK-H2O),SA suspension in water(SAS-H2O)and dried SA,which was subsequently diluted in ethanol(DSA-EtOH).There is significant potential for utilizing SA in wood treatment formulations as a sustainable alternative to harmful petroleum-derived chemicals.This approach not only addresses environmental concerns but also enhances the functionality of wood in construction applications,such as improving impregnation for moisture and fungal protection.Among the solutions tested,the ethanol solution of SA,specifically DSA-EtOH,showed the highest weight percent gain(WPG)and the greatest leaching resistance.GPC analysis showed that SA salts in ethanol(SAK-EtOH)and water(SAK-H2O)predominantly consist of low molecular fractions and each process(acidification and drying)reduces the low molecular content in the sample.This suggests that SA polymerizes after drying,making it necessary to dissolve it in ethanol to meet the requirements for impregnation.Further opti-mization,including adjustments in the concentration of the SA ethanol solution and the curing temperature,is essential to identify the optimal conditions for more in-depth impregnation studies.
基金supported by the Reliability Improvement Technology and Application of Epoxy Impregnated Paper Bushing in Extreme Environments under granted DQ30DK24001P.
文摘In Xinjiang,China,Oil-immersed paper bushings used in reactors are highly susceptible to discharge breakdown faults due to drastic fluctuations in environmental and oil temperatures.To mitigate this problem,oil-free and explosion-proof epoxy resin-impregnated paper(ERIP)bushings are recommended as replacements.This study develops a multi-physics(electric-thermal-fluid)coupling model for 750 kV high voltage reactors ERIP bushings.The model aims to comprehensively assess their thermal and electrical performance under extreme ambient temperatures ranging from−40℃ to 90℃ and oil temperatures varying from−10℃ to 90℃.The results demonstrate that the bushing temperature rises consistently with increases in ambient temperature.Additionally,the location of the hottest point on the conductive rod exhibits an upward shift as the ambient temperature climbs.Significantly,when a temperature difference exists between the oil and the external environment,this upward movement remains relatively constrained.Even when the external temperature increases from−40℃ to 80℃,the hottest point shifts upward only 2457 mm.Conversely,in the absence of a temperature difference between the oil and external environment,a modest 10℃ increase in ambient temperature(from 80℃ to 90℃)triggers a substantial 11,356 mm upward displacement of the hottest point.Moreover,this study reveals that the electric field distribution within the bushings remains largely unaffected by environmental temperature changes.
基金supported by the National Natural Science Foundation of China(Nos.52225004 and 22276182)the National Key R&D Program of China(Nos.2022YFC3701804 and 2022YFC3704400)the Science and Technology Innovation“2025”major program in Ningbo(No.2020Z103)。
文摘Hydrothermal stability is crucial for the practical application of deNO_(x)catalyst on diesel vehicles,for the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).SnO_(2)-based materials possess superior hydrothermal stability,which is attractive for the development of NH_(3)-SCR catalyst.In this work,a series of Ce-Nb/SnO_(2)catalysts,with Ce and Nb loading on SnO_(2)support,were prepared by impregnation method.It was found that,the NH_(3)-SCR activities and hydrothermal stabilities of the Ce-Nb/SnO_(2)catalysts significantly varied with the impregnation sequences,and the Ce-Nb(f)/SnO_(2) catalyst that firstly impregnated Nb and then impregnated Ce exhibited the best performance.The characterization results revealed that CeNb(f)/SnO_(2)possessed appropriate acidity and redox capability.Furthermore,the strong synergistic effect between Nb and Sn species stabilized the structure and maintained the dispersion of acid sites.This study may provide a new understanding for the effect of impregnation sequence on activity and hydrothermal stability and a new environmental-friendly NH_(3)-SCR catalyst with potential applications for NO_(x)removal from diesel and hydrogenfueled engines.
基金National Natural Science Foundation of China (Nos.51978175,42177196,and 22006015)the Scientific and Technological Planning Project of Guangzhou,China (No.202103000004)+2 种基金the Guangdong Province Science and Technology Planning Project,China (No.2022A0505050076)the Dongguan Science and Technology of Social Development Program (No.20211800904662)the Dongguan Sci-tech Commissioner Program (No.20221800500282)。
文摘Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-oil,biochar,and ash quality and quantity were characterized as a function of the immersion of K_(2)CO_(3),atmosphere type,blend ratio,and temperature.Compared to the mono-pyrolysis of TDS,its co-pyrolysis performance with CMR(the comprehensive performance index(CPI))significantly improved by 33.9%in the N_(2)atmosphere and 33.2%in the CO_(2)atmosphere.The impregnation catalyzed the co-pyrolysis at 370℃,reduced its activation energy by 77.3 kJ/mol in the N_(2)atmosphere and 134.6 kJ/mol in the CO_(2)atmosphere,and enriched the degree of coke gasification by 44.25%in the CO_(2)atmosphere.The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds,its catalytic and secondary products,and its bio-oil yield by 66.19%.Its bio-oils mainly contained olefins,aromatic structural substances,and alcohols.The immersion of K_(2)CO_(3)improved the aromaticity of the copyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO_(2)to form magnesium-silicate.The co-pyrolytic biochar surfaces mainly included-OH,-CH_(2),C=C,and Si-O-Si.The main phases in the co-pyrolytic ash included Ca_(5)(PO_(4))_(3)(OH),Al_(2)O_(3),and magnesium-silicate.
基金supported by the Major Program of National Natural Science Foundation of China(No.52293372).
文摘High-density carbon/carbon(C/C)composite plays a critical role in the aerospace industry owing to excellent mechanical properties and resistance to ablation.However,traditional manufacturing relies on pitch precursor and hot isostatic pressure impregnation and carbonization(HIPIC)technology,which is time-consuming and expensive.In this study,we report an innovative method utilizing polyarylacetylene(PAA)resin and ultra-high pressure impregnation and carbonization(UHPIC)technology.The extremely high char yield of PAA resin(85 wt.%)and high isotropic pressure of UHPIC(over 200 MPa)promote the densification of the composite.As a result,we achieve a high-density(1.90 g/cm^(3))C/C composite with a high degree of graphitization(81%).This composite exhibits impressive properties,including flexural strength of 146 MPa,compressive strength of 187 MPa,and thermal conductivity of 147 W/(m K).When exposed to oxyacetylene flame at 3000 K for 100 s,it displays minimal linear ablation,with a rate of 1.27×10^(-2)mm/s.This study demonstrates the exceptional graphitizable characteristic of PAA resin,setting it apart from conventional resins.Our time-saving and cost-effective approach holds significant promise for aerospace applications,particularly in harsh aerodynamic heating environments.
文摘Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.
基金financially supported by Natural Science foundation of Hebei Province (E2017209164) and (E2023209035)。
文摘To expand the application of multi-layer graphene in water-based systems, modified multi-layer graphene was prepared by vacuum impregnation with silica sol and carbon-embedded heat treatment at 300, 500 or 700 ℃ for 3 h. The phase composition, microstructure and wettability of the modified multi-layer graphene heat treated at different temperatures were studied. The results show that the water wettability of the modified multi-layer graphene is improved after vacuum impregnation with silica sol and carbon-embedded heat treatment;the optimum heat treatment temperature is 300 ℃, and the modified multi-layer graphene has the water wetting angle of 64.7°.
基金supported by the National Natural Science Foundation of China(21371035,21473036)SINOPEC(X514005)
文摘A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate.