期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bayesian Network Based Imprecise Probability Estimation Method for Wind Power Ramp Events 被引量:2
1
作者 Yuanchun Zhao Wenli Zhu +1 位作者 Ming Yang Mengxia Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1510-1519,共10页
Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise condi... Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise conditional probability estimation method for WPREs is proposed based on the Bayesian network(BN)theory.The method uses the maximum weight spanning tree(MWST)and greedy search(GS)to build a BN that has the highest fitting degree with the observed data.Meanwhile,an extended imprecise Dirichlet model(IDM)is developed to estimate the parameters of the BN,which quantificationally reflect the ambiguous dependencies among the random ramp event and various meteorological variables.The BN is then applied to predict the interval probability of each possible ramp state under the given meteorological conditions,which is expected to cover the target probability at a specified confidence level.The proposed method can quantify the uncertainty of the probabilistic ramp event estimation.Meanwhile,by using the extracted dependencies and Bayesian rules,the method can simplify the conditional probability estimation and perform reliable prediction even with scarce samples.Test results on a real wind farm with three-year operation data illustrate the effectiveness of the proposed method. 展开更多
关键词 Bayesian network(BN) conditional probability imprecise dirichlet model(IDM) imprecise probability wind power ramp events
原文传递
Distributionally Robust Economic Dispatch Using IDM for Integrated Electricity-heat-gas Microgrid Considering Wind Power 被引量:3
2
作者 Yang Liu Xianbang Chen +1 位作者 Lei Wu Yanli Ye 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期1182-1192,共11页
Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncer... Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively. 展开更多
关键词 Data-driven day-ahead economic dispatch distributionally robust optimization imprecise dirichlet model integrated electricity-heat-gas microgrid wind power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部