The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the d...The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the development of a fully implicit discretization method.The main advantage of the fully implicit method is its unconditional stability.Newton's scheme is a popular method of choice for the solution of a nonlinear system of equations arising from fully implicit discretization of field equations.However,the lack of convergence robustness and the construction of Jacobian matrix have created several difficulties for the researchers.In this paper,a fully implicit model is developed based on the SIMPLE algorithm for two-phase flow simulations.The drawbacks of Newton's method are avoided in the developed model.Different limiter functions are considered,and the stabilized method is developed under steady and transient conditions.The results obtained by the numerical modeling are in good agreement with the experimental data.As expected,the results prove that the developed model is not restricted by any stability limit.展开更多
Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to so...Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
The calculation sequence of collision, propagation and macroscopic variables is not very clear in lattice Boltzmann method (LBM) code implementation. According to the definition, three steps should be computed on all ...The calculation sequence of collision, propagation and macroscopic variables is not very clear in lattice Boltzmann method (LBM) code implementation. According to the definition, three steps should be computed on all nodes respectively, which mean three loops are needed. While the “pull” scheme makes the only one loop possible for coding, this is called semi-implicit scheme in this study. The accuracy and efficiency of semi-implicit scheme are discussed in detail through the simulation of lid-driven cavity flow. Non-equilibrium extrapolation scheme is adopted on the boundary of simulation area. The results are compared with two classic articles, which show that semi-implicit scheme has good agreement with the classic scheme. When Re is less than 3000, the iterations steps of semi-scheme can be decreased by about 30% though comparing the semi-implicit scheme with standard scheme containing three loops. As the Re increases into more than 3400, the standard scheme is not converged. On the contrary, the iterations of semi-implicit scheme are approximately linear to Re.展开更多
视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷...视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。展开更多
Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme...Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.展开更多
A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 a...A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed.展开更多
In this paper the laminar flow of Newtonian conducting fluid produced by a moving plate in presence of transverse magnetic field is investigated. The basic equation governing the motion of such flow is expressed in no...In this paper the laminar flow of Newtonian conducting fluid produced by a moving plate in presence of transverse magnetic field is investigated. The basic equation governing the motion of such flow is expressed in non-dimensional form. Analytic solution of the governing equation is obtained by Laplace transformation. Numerical solution of the dimensionless equation is also obtained with the help of Crank-Nicholson implicit scheme. Velocity profiles of the corresponding problem are shown in the graphs.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
随着分布式能源和储能容量的增加以及电动汽车的普及,配电网的功率流动由单向转变为双向,且网络拓扑由径向转变为复杂的网状结构。为了高效应对网状配电网的潮流(power flow,PF)分析和最优潮流(optimal power flow,OPF)问题,以及进一步...随着分布式能源和储能容量的增加以及电动汽车的普及,配电网的功率流动由单向转变为双向,且网络拓扑由径向转变为复杂的网状结构。为了高效应对网状配电网的潮流(power flow,PF)分析和最优潮流(optimal power flow,OPF)问题,以及进一步提升现有线性化模型的近似精度、完善对网络损耗等元素的线性近似,该文构建迭代隐式线性化潮流(iterative implicit linearization power flow,IIL-PF)模型及其最优潮流模型(IIL-OPF)。该模型将非线性潮流流形M(Manifold)视为节点电压和节点注入功率之间的隐式代数关系,之后利用切平面对M进行局部近似,并迭代更新线性化点以提高线性模型的近似精度。此外,所提模型充分考虑了支路始/末端潮流、支路潮流平方、支路损耗等因素,并对其进行明确的线性化推导。最后,基于修改的IEEE 33系统,分别在径向和网状运行方式下,验证所提模型可快速收敛,并具有较高的近似精度。其中IIL-PF计算结果、IIL-OPF的目标函数和发电机出力等优化结果与MATPOWER的非线性模型相比,误差均在1%以内,因此所提模型可以满足工程规划或日前运行模拟等应用要求。展开更多
文摘The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the development of a fully implicit discretization method.The main advantage of the fully implicit method is its unconditional stability.Newton's scheme is a popular method of choice for the solution of a nonlinear system of equations arising from fully implicit discretization of field equations.However,the lack of convergence robustness and the construction of Jacobian matrix have created several difficulties for the researchers.In this paper,a fully implicit model is developed based on the SIMPLE algorithm for two-phase flow simulations.The drawbacks of Newton's method are avoided in the developed model.Different limiter functions are considered,and the stabilized method is developed under steady and transient conditions.The results obtained by the numerical modeling are in good agreement with the experimental data.As expected,the results prove that the developed model is not restricted by any stability limit.
文摘Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
文摘The calculation sequence of collision, propagation and macroscopic variables is not very clear in lattice Boltzmann method (LBM) code implementation. According to the definition, three steps should be computed on all nodes respectively, which mean three loops are needed. While the “pull” scheme makes the only one loop possible for coding, this is called semi-implicit scheme in this study. The accuracy and efficiency of semi-implicit scheme are discussed in detail through the simulation of lid-driven cavity flow. Non-equilibrium extrapolation scheme is adopted on the boundary of simulation area. The results are compared with two classic articles, which show that semi-implicit scheme has good agreement with the classic scheme. When Re is less than 3000, the iterations steps of semi-scheme can be decreased by about 30% though comparing the semi-implicit scheme with standard scheme containing three loops. As the Re increases into more than 3400, the standard scheme is not converged. On the contrary, the iterations of semi-implicit scheme are approximately linear to Re.
文摘视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。
文摘Efficient solution techniques for high-order temporal and spatial discontinuous Galerkin(DG) discretizations of the unsteady Navier–Stokes equations are developed. A fourth-order implicit Runge–Kutta(IRK) scheme is applied for the time integration and a multigrid preconditioned GMRES solver is extended to solve the nonlinear system arising from each IRK stage. Several modifications to the implicit solver have been considered to achieve the efficiency enhancement and meantime to reduce the memory requirement. A variety of time-accurate viscous flow simulations are performed to assess the resulting high-order implicit DG methods. The designed order of accuracy for temporal discretization scheme is validate and the present implicit solver shows the superior performance by allowing quite large time step to be used in solving time-implicit systems. Numerical results are in good agreement with the published data and demonstrate the potential advantages of the high-order scheme in gaining both the high accuracy and the high efficiency.
基金the National Natural Science Foundation of China (Grant No.50579035)
文摘A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed.
文摘In this paper the laminar flow of Newtonian conducting fluid produced by a moving plate in presence of transverse magnetic field is investigated. The basic equation governing the motion of such flow is expressed in non-dimensional form. Analytic solution of the governing equation is obtained by Laplace transformation. Numerical solution of the dimensionless equation is also obtained with the help of Crank-Nicholson implicit scheme. Velocity profiles of the corresponding problem are shown in the graphs.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
文摘随着分布式能源和储能容量的增加以及电动汽车的普及,配电网的功率流动由单向转变为双向,且网络拓扑由径向转变为复杂的网状结构。为了高效应对网状配电网的潮流(power flow,PF)分析和最优潮流(optimal power flow,OPF)问题,以及进一步提升现有线性化模型的近似精度、完善对网络损耗等元素的线性近似,该文构建迭代隐式线性化潮流(iterative implicit linearization power flow,IIL-PF)模型及其最优潮流模型(IIL-OPF)。该模型将非线性潮流流形M(Manifold)视为节点电压和节点注入功率之间的隐式代数关系,之后利用切平面对M进行局部近似,并迭代更新线性化点以提高线性模型的近似精度。此外,所提模型充分考虑了支路始/末端潮流、支路潮流平方、支路损耗等因素,并对其进行明确的线性化推导。最后,基于修改的IEEE 33系统,分别在径向和网状运行方式下,验证所提模型可快速收敛,并具有较高的近似精度。其中IIL-PF计算结果、IIL-OPF的目标函数和发电机出力等优化结果与MATPOWER的非线性模型相比,误差均在1%以内,因此所提模型可以满足工程规划或日前运行模拟等应用要求。