期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deinterleaving of radar pulse based on implicit feature
1
作者 GUO Qiang TENG Long +2 位作者 WU Xinliang QI Liangang SONG Wenming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1537-1549,共13页
In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to dei... In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness. 展开更多
关键词 multi-functional radars of the same type pulse deinterleaving pulse amplitude implicit feature long short-term memory(LSTM)neural networks.
在线阅读 下载PDF
A Diffusion Model for Traffic Data Imputation
2
作者 Bo Lu Qinghai Miao +5 位作者 Yahui Liu Tariku Sinshaw Tamir Hongxia Zhao Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期606-617,共12页
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov... Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability. 展开更多
关键词 Data imputation diffusion model implicit feature time series traffic data
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部