We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement an...We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.展开更多
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc...Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.展开更多
This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit metho...In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method.展开更多
The extended finite element method is used to analyze a plate with two parallel edge cracks impacted by a cylindrical projectile. The influence of the impact speed, crack length, plate thickness and notch tip radius o...The extended finite element method is used to analyze a plate with two parallel edge cracks impacted by a cylindrical projectile. The influence of the impact speed, crack length, plate thickness and notch tip radius on the crack initiation and propagation is studied. Dynamics equations are solved by an implicit time integration scheme which is unconditionally stable. Very good agreement is achieved between numerical predictions and experimental results. The critical velocity of the crack initiation under different conditions is examined. The influence of the crack length is greater than that of the impact speed, plate thickness and notch tip radius.展开更多
基金the support under A*STAR SERC grant (132-183-0025)
文摘We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is devel- oped using C++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.
基金supported by the National Natural Science Foundation of China grants No.11971241.
文摘Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
基金the National Natural Sciences Foundation of China
文摘An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
文摘In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.11272096 and 11472086)the Research Fund for the Doctoral Program of Higher Education of China(No.20112304110015)
文摘The extended finite element method is used to analyze a plate with two parallel edge cracks impacted by a cylindrical projectile. The influence of the impact speed, crack length, plate thickness and notch tip radius on the crack initiation and propagation is studied. Dynamics equations are solved by an implicit time integration scheme which is unconditionally stable. Very good agreement is achieved between numerical predictions and experimental results. The critical velocity of the crack initiation under different conditions is examined. The influence of the crack length is greater than that of the impact speed, plate thickness and notch tip radius.