A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is pr...A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.展开更多
In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two ...In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.展开更多
In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and di...In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and discuss the iteratively B-convergence of the Newton iterative process for solving the algebraic equations of the scheme, secondly we present a strategy providing initial values parallelly for the iterative process. Finally, some numerical results show that our parallel scheme is higher efficient as N is not so large.展开更多
It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the...It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive ...We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.展开更多
本文提出了一种新型数值求解方法,该方法将四阶Runge-Kutta法与Newton迭代法相结合,旨在高效求解流体力学中的Blasius方程边值问题。首先,我们将Blasius方程转化为一组一阶微分方程组,并采用四阶Runge-Kutta法(RK4)进行数值求解。随后,...本文提出了一种新型数值求解方法,该方法将四阶Runge-Kutta法与Newton迭代法相结合,旨在高效求解流体力学中的Blasius方程边值问题。首先,我们将Blasius方程转化为一组一阶微分方程组,并采用四阶Runge-Kutta法(RK4)进行数值求解。随后,引入Newton迭代法动态调整初始条件,以确保满足边界条件的要求。实验结果表明,与传统的打靶法和结合打靶法的四阶Runge-Kutta法(SRK)进行对比实验,新方法在迭代次数和计算时间上均展现显著优势,同时求解精度也得到提升。In this paper, we propose a novel numerical solution method that combines the fourth-order Runge-Kutta method with the Newton iterative method, aiming to efficiently solve the margin problem of Blasius equation in fluid mechanics. Firstly, we transform the Blasius equation into a set of first-order differential equations and solve it numerically using the fourth-order Runge-Kutta method (RK4). Subsequently, the Newton iteration method is dynamically introduced to adjust the initial conditions to ensure that the boundary conditions are satisfied. The experimental results show that the new method exhibits significant advantages in terms of the number of iterations and computation time, as well as improved solution accuracy, in comparison experiments with the traditional shooting method and the Runge-Kutta method (SRK) combined with the improved shooting method.展开更多
Realistic human reconstruction embraces an extensive range of applications as depth sensors advance.However,current stateof-the-art methods with RGB-D input still suffer from artefacts,such as noisy surfaces,non-human...Realistic human reconstruction embraces an extensive range of applications as depth sensors advance.However,current stateof-the-art methods with RGB-D input still suffer from artefacts,such as noisy surfaces,non-human shapes,and depth ambiguity,especially for the invisible parts.The authors observe the main issue is the lack of geometric semantics without using depth input priors fully.This paper focuses on improving the representation ability of implicit function,exploring an effective method to utilise depth-related semantics effectively and efficiently.The proposed geometry-enhanced implicit function enhances the geometric semantics with the extra voxel-aligned features from point clouds,promoting the completion of missing parts for unseen regions while preserving the local details on the input.For incorporating multi-scale pixel-aligned and voxelaligned features,the authors use the Squeeze-and-Excitation attention to capture and fully use channel interdependencies.For the multi-view reconstruction,the proposed depth-enhanced attention explicitly excites the network to“sense”the geometric structure for a more reasonable feature aggregation.Experiments and results show that our method outperforms current RGB and depth-based SOTA methods on the challenging data from Twindom and Thuman3.0,and achieves a detailed and completed human reconstruction,balancing performance and efficiency well.展开更多
The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is l...The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation.展开更多
The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of ...The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of limited local exploration capabilities and less precise solutions.Therefore,this research aims to integrate the topological search(TS)mechanism with the gradient search rule(GSR)into the framework of RUN,introducing an enhanced algorithm called TGRUN to improve the performance of the original algorithm.The TS mechanism employs a circular topological scheme to conduct a thorough exploration of solution regions surrounding each solution,enabling a careful examination of valuable solution areas and enhancing the algorithm’s effectiveness in local exploration.To prevent the algorithm from becoming trapped in local optima,the GSR also integrates gradient descent principles to direct the algorithm in a wider investigation of the global solution space.This study conducted a serious of experiments on the IEEE CEC2017 comprehensive benchmark function to assess the enhanced effectiveness of TGRUN.Additionally,the evaluation includes real-world engineering design and feature selection problems serving as an additional test for assessing the optimisation capabilities of the algorithm.The validation outcomes indicate a significant improvement in the optimisation capabilities and solution accuracy of TGRUN.展开更多
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli...Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.
文摘In this paper, the Ito-Taylor expansion of stochastic differential equation is briefly introduced. The colored rooted tree theory is applied to derive strong order 1.0 implicit stochastic Runge-Kutta method(SRK). Two fully implicit schemes are presented and their stability qualities are discussed. And the numerical report illustrates the better numerical behavior.
基金national natural science foundation natural science foundation of Gansu province.
文摘In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and discuss the iteratively B-convergence of the Newton iterative process for solving the algebraic equations of the scheme, secondly we present a strategy providing initial values parallelly for the iterative process. Finally, some numerical results show that our parallel scheme is higher efficient as N is not so large.
文摘It is well known that mono-implicit Runge-Kutta methods have been applied in the efficient numerical solution of initial or boundary value problems of ordinary differential equations. Burrage (1994) has shown that the order of an s-stage monoimplicit Runge-Kutta method is at most s+1 and the stage order is at most 3. In this paper, it is shown that the order of an s-stage mono-implicit Runge-Kutta method being algebraically stable is at most min((s) over tilde, 4), and the stage order together with the optimal B-convergence order is at most min(s, 2), where [GRAPHICS]
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12172160)Shenzhen Science and Technology Program(Grant No.JCYJ20220818100600002)+1 种基金South-ern University of Science and Technology(Grant No.Y01326127)the Department of Science and Technology of Guangdong Province(Grant Nos.2020B1212030001 and 2021QN020642).
文摘We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.
文摘本文提出了一种新型数值求解方法,该方法将四阶Runge-Kutta法与Newton迭代法相结合,旨在高效求解流体力学中的Blasius方程边值问题。首先,我们将Blasius方程转化为一组一阶微分方程组,并采用四阶Runge-Kutta法(RK4)进行数值求解。随后,引入Newton迭代法动态调整初始条件,以确保满足边界条件的要求。实验结果表明,与传统的打靶法和结合打靶法的四阶Runge-Kutta法(SRK)进行对比实验,新方法在迭代次数和计算时间上均展现显著优势,同时求解精度也得到提升。In this paper, we propose a novel numerical solution method that combines the fourth-order Runge-Kutta method with the Newton iterative method, aiming to efficiently solve the margin problem of Blasius equation in fluid mechanics. Firstly, we transform the Blasius equation into a set of first-order differential equations and solve it numerically using the fourth-order Runge-Kutta method (RK4). Subsequently, the Newton iteration method is dynamically introduced to adjust the initial conditions to ensure that the boundary conditions are satisfied. The experimental results show that the new method exhibits significant advantages in terms of the number of iterations and computation time, as well as improved solution accuracy, in comparison experiments with the traditional shooting method and the Runge-Kutta method (SRK) combined with the improved shooting method.
基金supported by the National Key R&D Programme of China(2022YFF0902200).
文摘Realistic human reconstruction embraces an extensive range of applications as depth sensors advance.However,current stateof-the-art methods with RGB-D input still suffer from artefacts,such as noisy surfaces,non-human shapes,and depth ambiguity,especially for the invisible parts.The authors observe the main issue is the lack of geometric semantics without using depth input priors fully.This paper focuses on improving the representation ability of implicit function,exploring an effective method to utilise depth-related semantics effectively and efficiently.The proposed geometry-enhanced implicit function enhances the geometric semantics with the extra voxel-aligned features from point clouds,promoting the completion of missing parts for unseen regions while preserving the local details on the input.For incorporating multi-scale pixel-aligned and voxelaligned features,the authors use the Squeeze-and-Excitation attention to capture and fully use channel interdependencies.For the multi-view reconstruction,the proposed depth-enhanced attention explicitly excites the network to“sense”the geometric structure for a more reasonable feature aggregation.Experiments and results show that our method outperforms current RGB and depth-based SOTA methods on the challenging data from Twindom and Thuman3.0,and achieves a detailed and completed human reconstruction,balancing performance and efficiency well.
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002 and 2019ZA052011)。
文摘The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LTGS23E070001,LZ22F020005,LTGY24C060004National Natural Science Foundation of China,Grant/Award Numbers:62076185,62301367,62273263。
文摘The Runge-Kutta optimiser(RUN)algorithm,renowned for its powerful optimisation capabilities,faces challenges in dealing with increasing complexity in real-world problems.Specifically,it shows deficiencies in terms of limited local exploration capabilities and less precise solutions.Therefore,this research aims to integrate the topological search(TS)mechanism with the gradient search rule(GSR)into the framework of RUN,introducing an enhanced algorithm called TGRUN to improve the performance of the original algorithm.The TS mechanism employs a circular topological scheme to conduct a thorough exploration of solution regions surrounding each solution,enabling a careful examination of valuable solution areas and enhancing the algorithm’s effectiveness in local exploration.To prevent the algorithm from becoming trapped in local optima,the GSR also integrates gradient descent principles to direct the algorithm in a wider investigation of the global solution space.This study conducted a serious of experiments on the IEEE CEC2017 comprehensive benchmark function to assess the enhanced effectiveness of TGRUN.Additionally,the evaluation includes real-world engineering design and feature selection problems serving as an additional test for assessing the optimisation capabilities of the algorithm.The validation outcomes indicate a significant improvement in the optimisation capabilities and solution accuracy of TGRUN.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers CSTB2024TIAD-CYKJCXX0009,CSTB2024NSCQ-LZX0043,CSTB2022NSCQ-MSX0288Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology Graduate Education High-Quality Development Project,grant number gzlsz202401the Chongqing University of Technology—Chongqing LINGLUE Technology Co.,Ltd.Electronic Information(Artificial Intelligence)Graduate Joint Training Basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.Computer Technology Graduate Joint Training Base.
文摘Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.