This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using prec...This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.展开更多
A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems...A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings展开更多
A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a...A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .展开更多
A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is intro...A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.展开更多
Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to so...Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.展开更多
By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative a...By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative algorithm to compute approximate solutions are proved in Hilbert spaces. The obtained result is a improvement over and generalization of the main theorem proposed by Ding.展开更多
A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium pro...A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.展开更多
This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The...This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.展开更多
文摘This paper presents a finite element procedure for solving transient, multidimensional convection-diffusion equations. The procedure is based on the characteristic Galerkin method with an implicit algorithm using precise integration method. With the operator splitting procedure, the precise integration method is introduced to determine the material derivative in the convection-diffusion equation, consequently, the physical quantities of material points. An implicit algorithm with a combination of both the precise and the traditional numerical integration procedures in time domain in the Lagrange coordinates for the characteristic Galerkin method is formulated. The stability analysis of the algorithm shows that the unconditional stability of present implicit algorithm is enhanced as compared with that of the traditional implicit numerical integration procedure. The numerical results validate the presented method in solving convection-diffusion equations. As compared with SUPG method and explicit characteristic Galerkin method, the present method gives the results with higher accuracy and better stability.
基金Project supported by the Natural Science Foundation of Sichuan Educational Commission (No.2003A081)
文摘A new class of generalized mixed implicit quasi-equilibrium problems (GMIQEP) with four-functions is introduced and studied. The new class of equilibrium problems includes many known generalized equilibrium problems and generalized mixed implicit quasi-variational inequality problems as many special cases. By employing the auxiliary principle technique, some predictor-corrector iterative algorithms for solving the GMIQEP are suggested and analyzed. The convergence of the suggested algorithm only requires the continuity and the partially relaxed implicit strong monotonicity of the mappings
基金the Teaching and Research Award Fund for Qustanding Young Teachers in Higher Education Institutions of MOE, PRC the Special Funds for Major Specialities of Shanghai Education Committee+1 种基金the Department Fund of ScienceTechnology in Shanghai Higher Educ
文摘A new class of general multivalued mixed implicit quasi-variational inequalities in a real Hilbert space was introduced, which includes the known class of generalized mixed implicit quasi-variational inequalities as a special case , introduced and studied by Ding Xie-ping . The auxiliary variational principle technique was applied to solve this class of general multivalued mixed implicit quasi-variational inequalities. Firstly, a new auxiliary variational inequality with a proper convex , lower semicontinuous , binary functional was defined and a suitable functional was chosen so that its unique minimum point is equivalent to the solution of such an auxiliary variational inequality . Secondly , this auxiliary variational inequality was utilized to construct a new iterative algorithm for computing approximate solutions to general multivalued mixed implicit quasi-variational inequalities . Here , the equivalence guarantees that the algorithm can generate a sequence of approximate solutions. Finally, the existence of solutions and convergence of approximate solutions for general multivalued mixed implicit quasi-variational inequalities are proved. Moreover, the new convergerce criteria for the algorithm were provided. Therefore, the results give an affirmative answer to the open question raised by M. A . Noor, and extend and improve the earlier and recent results for various variational inequalities and complementarity problems including the corresponding results for mixed variational inequalities, mixed quasi-variational inequalities and quasi-complementarity problems involving the single-valued and set- valued mappings in the recent literature .
基金Project supported by the Scientific Research Fund of Sichuan Normal University(No.09ZDL04)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field.
文摘Omitting viscosity along flow direction, we have simplified the dimensionless N-Sequations in arbitrary curved coordinate system as the thin layer equations. Using theimplicit approximate-factorization algorithm to solve the gas-phase governing equ-ations and the characteristic method to follow the tracks of particles, we then obtainedthe full coupled numerical method of two-phase.transonic, turbulent flow. Here, par- ticle size may be grouped, the subsonic boundary condition at entry of nozzle is ireatedby quasi-characteristic method in reference plane and the algebraic model is used forturbulent flow. These methods are applied in viscous two-phase flow. calculation of ro-cket nozzle and in the prediciton of thrust and specific impulse for solid propellant ro-cket motor. The calculation results are in good agreement with the measurerment va-lues. Moreover, the influences of different particle radius, different particle mass frac-tion and particle size grouped on flow field have been discussed, and the influences of particle two-dimensional radial velosity component and viscosity on specific impulse ofrocket motor have been analysed.The method of this paper possesses the advantage of saving computer time. More important, the effect is more obvious for the calculation of particle size being grouped.
文摘By applying the auxiliary variational principle technique, the existence of solutions for a new class of generalized mixed implicit quasi-variational-like inequalities and the convergence criteria of a new iterative algorithm to compute approximate solutions are proved in Hilbert spaces. The obtained result is a improvement over and generalization of the main theorem proposed by Ding.
基金Project supported by the Sichuan Province Leading Academic Discipline Project(No.SZD0406)the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)
文摘A new system of generalized mixed implicit equilibrium problems (SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces. First, an auxiliary mixed equilibrium problem (AMEP) is introduced. The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions. Next, by using the solution mapping of the AMEP, a system of generalized equation problems (SGEP) is considered, and its equivalence with the SGMIEP is shown. By using the SGEP, a new iterative algorithm for solving the SGMIEP is proposed and analyzed. The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions. These results are new, which unify and generalize some recent results in this field.
文摘This paper focuses on derivation of a uniform order 8 implicit block method for the direct solution of general second order differential equations through continuous coefficients of Linear Multi-step Method (LMM). The continuous formulation and its first derivatives were evaluated at some selected grid and off grid points to obtain our proposed method. The superiority of the method over the existing methods is established numerically.