Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater cont...Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater contaminant remediation project?This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects.Specifically,it considers remediation efforts based on the Pump and Treat(PAT)technique under various hydrogeological conditions and contaminant properties,comparing the total remediation cost and effectiveness.To further investigate,a multi-objective simulation and optimization model,utilizing the Multi-Objective Fast Harmony Search(MOFHS)algorithm,was employed to identify optimal groundwater remediation system designs that without impermeable curtains.Both a two-dimensional(2-D)hypothetical example and a three-dimensional(3-D)field example were used to assess the necessity of constructing impermeable curtains.The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity(αL)of the contaminant reaches 100 meters.In most cases,particularly at sites with porosity(n)under 0.3,alternative,more cost-effective,and efficient remediation strategies may be available,making impermeable barriers unnecessary.The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example.These findings provide valuable guidance for more scientifically informed,reasonable,and cost-effective groundwater contaminant remediation projects.展开更多
Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled ...Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled discrete element method(DEM)and computational fluid dynamics(CFD)approach is adopted to model suffusion in multi-layered soils with different fines contents,and soils with one or more impermeable zones.The parameters of the CFD-DEM model are first calibrated with the classic Ergun test and a good match with experiment is obtained.Then suffusion in multi-layered soils with different fines contents and impermeable zones is simulated and discussed.The simulation results show that,for soils with multiple layers,the cumulative eroded mass is mainly determined by the fines content of the bottom layer.In general,the higher the fines content of the bottom soil layer,the higher the cumulative eroded mass.In addition,suffusion is more severe if the fines content of the layer above is decreased.Impermeable zones inside soil specimens can increase the flow velocity around those zones,facilitating the migration of fine particles and intensifying suffusion.展开更多
A kind of high impermeable and crack-resistance chemical admixture ( HICRCA) was prepared , which is a compound chemical admixture composed of an expansion ingredient, density ingredient, and organic hydrophobic poreb...A kind of high impermeable and crack-resistance chemical admixture ( HICRCA) was prepared , which is a compound chemical admixture composed of an expansion ingredient, density ingredient, and organic hydrophobic poreblocking ingredient. The results of the experiments indicate that the addition of HICRCA improves mortar and concrete in the following performances: (1) perfect workability: slump is more than 22cm, theslump afar 3h is about 16cm; (2) high impermeability:for the mortar, the pervious height under a water pressure of 1.5MPa is 1.5cm,for the concrete, the pervious height under a water pressure of 5.0MPa is 2. 2cm;(3) high crack-resistance: there is a micro-expansion at the age of 90d; (4) high compressivestrength: compared with the controlled concrete, the compressive strengths at the age of 3d and 2Sd are improved by 66.4% and 62.0% , respectively. At the same time, the effects of different curing condition on mortar and concrete expansive andshrinkage performance were studied. In addition, the impermeable and crack-resistance mechanism, was investigatedin the present paper.展开更多
This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel w...This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,展开更多
Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical bound...Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical boundary conditions have little effect on the polarization distribution without any external load when the initial polarization is parallel to the crack,which is totally different from previous studies where the initial polarization is perpendicular to the crack.How-ever,the simulation results show that the electrical boundary conditions have great influence on the polarization distribution as well as the domain switching behavior when a mechanical load is applied.The critical mechanical load of domain switching with a permeable crack is much smaller than that in the case of an impermeable crack.展开更多
Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving ...Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.展开更多
Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-divisi...Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-division technique.Theoretical solutions were derived for the whole elastic displacement and electric potential field in the interaction between the circular cavity and the impermeable crack.Expressions were obtained on the dynamic stress concentration factor(DSCF) at the cavity's edge,the dynamic stress intensity factor(DSIF) and the dynamic electric displacement intensity factor(DEDIF) at the crack tip.Numerical solutions were performed and plotted with different incident wave numbers,parameters of piezoelectric materials and geometries of the structure.Finally,some of the calculation results were compared with the case of dynamic anti-plane interaction of a permeable crack and a circular cavity in an infinite piezoelectric medium.This paper can provide a valuable reference for the design of piezoelectric actuators and sensors widely used in marine structures.展开更多
Cell-based assays represent a major end point of high throughput screening (HTS) but a key limitation of such assays is the potentially poor membrane permeability of test compounds. In this study, we optimized the con...Cell-based assays represent a major end point of high throughput screening (HTS) but a key limitation of such assays is the potentially poor membrane permeability of test compounds. In this study, we optimized the conditions for the delivery of the membrane impermeable compound 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) into human cells using hypotonic shift;a method that can promote the uptake of molecules from the extracellular fluid into cell cytoplasm via endocytosis. We showed that uptake of HPTS by cells was a function of hypotonic buffer osmolarity and that delivery was highly efficient with almost 100% of cells displaying uptake. Delivery of HPTS was equally effective at 25°C and 37°C, with delivery of compound proportional to incubation time and concentration of HPTS within the loading medium. The experimental conditions identified in this study could be applied to HTS drug discovery studies providing an effective method of delivering small membrane impermeable compounds into cells.展开更多
The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In ...The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer. These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of diabatic heating.展开更多
This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume me...This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.展开更多
It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,h...It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.展开更多
The steady-state flow mathematical model of arbitrary shaped homogeneous reservoirs with impermeable barrier is constructed in this paper. By using Boundary Element Method (BEM), the mathematical model is solved. An...The steady-state flow mathematical model of arbitrary shaped homogeneous reservoirs with impermeable barrier is constructed in this paper. By using Boundary Element Method (BEM), the mathematical model is solved. And a streamline generating technique is presented. The figures of streamlines are plotted and analyzed considering the effect of complex boundary and impermeable barriers. Through analyzing it indicates that the size, shape and orientation of impermeable barriers have various degree of influence on the streamlines. So, if there are impermeable barriers in reservoir according to the geological materials, the influence of impermeable barriers must be considered when adjusting flood pattern and injection strategy.展开更多
Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution...Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.展开更多
The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Pl...The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Plasticized Polyether(NEPE) propellant/Hydroxyl-terminated Polybutadiene(HTPB) liner/Ethylene Propylene Diene Monomer(EPDM) insulation bonding system. This paper proposes an innovative surface modification method attempting to modify the EPDM insulation layer coated with reduced graphene oxide(RGO), which exhibits ability to weaken the NG absorption by EPDM insulation layer,blocking the pathway of NG migration into EPDM insulation materials. The microstructure of RGO-coated layer was analyzed and the formation mechanism was investigated. The RGO-coated layer is well bonded to the HTPB liner, and its anti-migration performance to NG at different temperatures has been evaluated. Comparing with blank samples under the same storage conditions, the RGO-coated layers can reduce the diffusion coefficient of NG by up to 87.3% and increase the diffusion activation energy of NG by14.8 kJ,mol^(-1). This research provides a new strategy to effectively inhibit NG migration in NEPE propellant/HTPB liner/EPDM insulation bonding system.展开更多
This study aimed to devise strategies for alleviating the detrimental impacts of floods in the vicinity of a dike. Experiments were conducted in an open rectangular channel to investigate the flow dynamics under varyi...This study aimed to devise strategies for alleviating the detrimental impacts of floods in the vicinity of a dike. Experiments were conducted in an open rectangular channel to investigate the flow dynamics under varying dike conditions. To address concerns related to intense whirls and concentrated flow around the dike head, comparative analysis was performed in terms of flow structures and energy reduction around I-shaped and T-shaped dikes with two ratios of wing length (lw) to dike length (ld) (lw/ld = 1.41 and 2.43). The T-shaped dike wings were equipped with diverse designs: angled footing, delta vane, and streamlined tapered, resulting in elevated backwater in front of the dike, reduced velocity, and enhanced energy reduction. The findings indicated that elongating the wing reciprocally affected the depth-averaged velocity (at the dike head and near the adjacent dike bank), concurrently impacting flow deflection, backwater rise, and energy reduction rate. The T-shaped dike, specifically with an angled footing (lw/ld = 2.43), yielded optimal outcomes. These included significant reductions in maximum energy (46%), tip velocity (98%), and dike adjacent bank velocity (90%), as well as significant flow deflection towards the mainstream, outperforming the I-shaped impermeable dike. The proposed solutions exhibit efficacy in mitigating rapid deterioration during floods, securing both the dike head and the neighboring bank to avert failures in high-energy flow.展开更多
The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and morta...The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and mortar mixtures was implemented to improve their strength and waterproofing, respectively, using compression and water absorption tests according to their corresponding standards (ASTM C1231, ASTM D2938, and ASTM C1585). The samples were evaluated at different concentrations and curing ages. In addition, different sand/cement ratios were considered for the mortar. The results revealed that there was a 9.4% increase in compressive strength in concrete and a 23.7% reduction in water absorption in mortar for the 5:1 ratio. These changes would be the result of the interaction of the nanoporous additive in the atomic crystal structure of the material demonstrating the nanotechnological nature of allophane.展开更多
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro...Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.展开更多
The increased application of chemical fertilizers in citrus orchards and the non-point source nitrogen(N) and phosphorus(P)diffusion threaten the fresh water quality of the Three Gorges Reservoir area of China. A 10-y...The increased application of chemical fertilizers in citrus orchards and the non-point source nitrogen(N) and phosphorus(P)diffusion threaten the fresh water quality of the Three Gorges Reservoir area of China. A 10-year field trial on sloping citrus lands was conducted to evaluate five protection methods for reducing N and P losses: 1) intercropping with perennial white clover(CW); 2) straw mulching of the soil surface(CS); 3) intercropping with yellow daylily contour hedgerows(CH); 4) an impermeable membrane buried in the soil along the contour lines(CM); and 5) intercropping with a rotation of wheat and peanut(CWP). An area of conventional citrus management was also maintained as the control(CK). The results showed that CM and CH were the most effective methods for reducing surface runoff. The sediment yield were reduced at the highest rate by CW and CH and was also significantly reduced by CS. Reduced runoff volume and sediment yield were the crucial mechanism for the reductions in N and P losses. Compared with the control, CW, CS, CH, and CM reduced annual runoff by 9%, 13%, 25%, and 30%, sediment yield by 77%, 55%, 71%, and 28%,N loss by 10%, 23% 36%, and 37%, and P loss by 39%, 31%, 27%, and 25%, respectively. CW, CS, CH, and CM were effective in reducing N and P losses from the sloping citrus land. However, over the long-term, surface soil nutrient accumulation in CW, CS, and CH diminished the benefit of those methods in reducing N and P losses. In addition, CWP increased soil erosion and nutrient loss,which showed that citrus intercropping with other crops was an unsuitable method for citrus sloping land in the Three Gorges area.展开更多
We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence ...We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence of smooth solutions. Employing the L2- energy estimate, we prove that the impermeable problem has a unique global solutionis.展开更多
In tropical ecosystems,species with an impermeable seed coat,i.e.physical dormancy(PY),are large in number and their seed coat is considered to be an adaptive trait for species persistence and colonization.However,onl...In tropical ecosystems,species with an impermeable seed coat,i.e.physical dormancy(PY),are large in number and their seed coat is considered to be an adaptive trait for species persistence and colonization.However,only little is known about their mechanisms for breaking dormancy.The objective of this study was to understand the importance of seed maturation site and burial location in determining the PY release of Senna auriculata.Freshly collected seeds of S.auriculata from Vellore and Coimbatore,Tamil Nadu,India,germinated to 11±1.5%and19±2.5%respectively and remaining seeds did not imbibe water,thus had PY.Germination of seeds from both sites following hot-water treatment for 30 s and mechanical scarification increased significantly and seeds were able to germinate at a wide-range of temperatures(5–35℃)both in light and darkness.When incubated at 15/60℃for 3 months,dormancy release for seeds collected from Coimbatore(72%)was greater than seeds matured in Vellore(53%).Following 1 year of burial at three different locations,seeds from Coimbatore germinated to higher percentage than Vellore seeds at all locations.In particular,the higher temperature sites released dormancy to greater extent than the lower temperature site.Our results suggest that summer temperatures(>60℃)prevailing in the tropics provide appropriate cues for breaking PY,but this could be greatly affected by the initial state of seeds and the burial environment.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3702200)the National Natural Science Foundation of China(Grant Nos.42372279 and U2267218)the Natural Science Foundation of Anhui Province(Grant No.JZ2022AKZR0451).
文摘Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater contaminant remediation project?This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects.Specifically,it considers remediation efforts based on the Pump and Treat(PAT)technique under various hydrogeological conditions and contaminant properties,comparing the total remediation cost and effectiveness.To further investigate,a multi-objective simulation and optimization model,utilizing the Multi-Objective Fast Harmony Search(MOFHS)algorithm,was employed to identify optimal groundwater remediation system designs that without impermeable curtains.Both a two-dimensional(2-D)hypothetical example and a three-dimensional(3-D)field example were used to assess the necessity of constructing impermeable curtains.The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity(αL)of the contaminant reaches 100 meters.In most cases,particularly at sites with porosity(n)under 0.3,alternative,more cost-effective,and efficient remediation strategies may be available,making impermeable barriers unnecessary.The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example.These findings provide valuable guidance for more scientifically informed,reasonable,and cost-effective groundwater contaminant remediation projects.
基金This work is supported by the Research Grants Council(RGC)of Hong Kong(No.15226322)the National Natu‐ral Science Foundation of China(No.42207210).
文摘Suffusion in broadly graded granular soils is caused by fluid flow and is a typical cause of geo-hazards.Previous studies of it have mainly focused on suffusion in homogeneous soil specimens.In this study,the coupled discrete element method(DEM)and computational fluid dynamics(CFD)approach is adopted to model suffusion in multi-layered soils with different fines contents,and soils with one or more impermeable zones.The parameters of the CFD-DEM model are first calibrated with the classic Ergun test and a good match with experiment is obtained.Then suffusion in multi-layered soils with different fines contents and impermeable zones is simulated and discussed.The simulation results show that,for soils with multiple layers,the cumulative eroded mass is mainly determined by the fines content of the bottom layer.In general,the higher the fines content of the bottom soil layer,the higher the cumulative eroded mass.In addition,suffusion is more severe if the fines content of the layer above is decreased.Impermeable zones inside soil specimens can increase the flow velocity around those zones,facilitating the migration of fine particles and intensifying suffusion.
基金Funded by Natural Science Foundation of Hubei Province (No.2000J027)
文摘A kind of high impermeable and crack-resistance chemical admixture ( HICRCA) was prepared , which is a compound chemical admixture composed of an expansion ingredient, density ingredient, and organic hydrophobic poreblocking ingredient. The results of the experiments indicate that the addition of HICRCA improves mortar and concrete in the following performances: (1) perfect workability: slump is more than 22cm, theslump afar 3h is about 16cm; (2) high impermeability:for the mortar, the pervious height under a water pressure of 1.5MPa is 1.5cm,for the concrete, the pervious height under a water pressure of 5.0MPa is 2. 2cm;(3) high crack-resistance: there is a micro-expansion at the age of 90d; (4) high compressivestrength: compared with the controlled concrete, the compressive strengths at the age of 3d and 2Sd are improved by 66.4% and 62.0% , respectively. At the same time, the effects of different curing condition on mortar and concrete expansive andshrinkage performance were studied. In addition, the impermeable and crack-resistance mechanism, was investigatedin the present paper.
文摘This paper presents the results of an experimental study on the influences of floodplain impermeable groynes on flow structure, velocity, and water depth around the groyne(s). A wooden symmetrical compound channel was used. Groyne models with three different groyne relative lengths, 0.5, 0.75, and 1.0, were used on one floodplain with single and series arrangements. Analysis of the experimental results using the measured flow velocity and water depth values showed that flow structure, velocity, and water depth mainly depend on groyne relative length and the relative distance between series groynes. The flow velocity at the main channel centerline increased by about 40%, 60%, and 85%, and in other parts on the horizontal plane at the floodplain mid-water, depth by about 75%, 125%, and 175% of its original value in eases of one-side floodplain groyne(s) with relative lengths of 0.5, 0.75, and 1.0, respectively. The effective distance between two groynes in series arrangement ranges from 3 to 4 times the groyne length. Using an impermeable groyne with a large relative length in river floodplains increases the generation of eddy and roller zones downstream of the groyne, leading to more scouring and deposition. To avoid that, the groyne relative length must be kept below half the floodplain width,
基金supported by the National Natural Science Foundation of China (Nos. 10832009,11002123 and 11090333)the Zhejiang Provincial Natural Science Foundation under grant R6110115+1 种基金the Chinese Universities Scientific Fund under grant 2009QNA4035the program of Key Team of Technological Innovation of Zhejiang Province under grant2011R09025-07
文摘Domain switching around electrically permeable and impermeable cracks in ferro-electric single crystals subjected to a mechanical load is investigated by using a phase field model.It is found that the electrical boundary conditions have little effect on the polarization distribution without any external load when the initial polarization is parallel to the crack,which is totally different from previous studies where the initial polarization is perpendicular to the crack.How-ever,the simulation results show that the electrical boundary conditions have great influence on the polarization distribution as well as the domain switching behavior when a mechanical load is applied.The critical mechanical load of domain switching with a permeable crack is much smaller than that in the case of an impermeable crack.
文摘Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four Cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate we obtained, The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h --> infinity.
基金Supported by the Natural Science Foundation of Heilongjiang Province of China (A00-10)the Basis Research Foundation of Harbin Engineering University (HEUF04008)
文摘Wave propagation in an infinite elastic piezoelectric medium with a circular cavity and an impermeable crack subjected to steady-state anti-plane shearing was studied based on Green's function and the crack-division technique.Theoretical solutions were derived for the whole elastic displacement and electric potential field in the interaction between the circular cavity and the impermeable crack.Expressions were obtained on the dynamic stress concentration factor(DSCF) at the cavity's edge,the dynamic stress intensity factor(DSIF) and the dynamic electric displacement intensity factor(DEDIF) at the crack tip.Numerical solutions were performed and plotted with different incident wave numbers,parameters of piezoelectric materials and geometries of the structure.Finally,some of the calculation results were compared with the case of dynamic anti-plane interaction of a permeable crack and a circular cavity in an infinite piezoelectric medium.This paper can provide a valuable reference for the design of piezoelectric actuators and sensors widely used in marine structures.
文摘Cell-based assays represent a major end point of high throughput screening (HTS) but a key limitation of such assays is the potentially poor membrane permeability of test compounds. In this study, we optimized the conditions for the delivery of the membrane impermeable compound 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) into human cells using hypotonic shift;a method that can promote the uptake of molecules from the extracellular fluid into cell cytoplasm via endocytosis. We showed that uptake of HPTS by cells was a function of hypotonic buffer osmolarity and that delivery was highly efficient with almost 100% of cells displaying uptake. Delivery of HPTS was equally effective at 25°C and 37°C, with delivery of compound proportional to incubation time and concentration of HPTS within the loading medium. The experimental conditions identified in this study could be applied to HTS drug discovery studies providing an effective method of delivering small membrane impermeable compounds into cells.
基金supported bythe National Science Foundation (USAGrant No. ATM-0758609)+1 种基金the National Aeronautics and Space Administration (USAGrant No. NNG05GR32G)
文摘The impermeability of isentropic surfaces by the potential vorticity substance (PVS) has often been used to help understand the generation of potential vorticity in the presence of diabatic heating and friction. In this study, we examined singularities of isentropic surfaces that may develop in the presence of diabatic heating and the fictitious movements of the isentropic surfaces that are involved in deriving the PVS impermeability theorem. Our results show that such singularities could occur in the upper troposphere as a result of intense convective-scale motion, at the cloud top due to radiative cooling, or within the well-mixed boundary layer. These locally ill-defined conditions allow PVS to penetrate across an isentropic surface. We conclude that the PVS impermeability theorem is generally valid for the stably stratified atmosphere in the absence of diabatic heating.
基金supported by the National Natural Science Foundation of China(Grant No.51279189)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2008AA09Z309)China Scholarship Council and University of Aberdeen
文摘This study proposes a new approach in which an impermeable plate is placed under the pipeline to prevent the local scour around the pipeline.In order to understand the performance of this approach,the finite volume method(FVM) and volume of fluid(VOF) method are adopted to simulate the flow field around the pipeline.The pressure distribution along the sandy bed surface is obtained by considering the variation of water surface.Furthermore,the effects of water depth,unidirectional and bidirectional impermeable plates on pressure difference are discussed.The seepage flow field of sandy bed near underwater pipeline is numerically simulated using the laminar and porous media model.On this basis,the effect of the impermeable plate length on hydraulic gradient is investigated and the critical length of impermeable plate is obtained.The simulated results show that when the water depth is smaller than 5.00D(D is the diameter of pipeline),the effect of the water depth on the pressure difference is remarkable.The pressure differences between two endpoints of both the unidirectional and bidirectional plates decrease with the increase of the plate length.The variations of the pressure differences for both the unidirectional and bidirectional plates are similar.With the increase of plate length,the hydraulic gradient decreases and the piping at the seepage exit is avoided effectively as long as it reaches a certain length.Such a critical length of the plate decreases with the increase of the water depth.When water depth is larger than 4.00D,the effect of the water depth on the critical length is small.For the same water depth,the critical length of impermeable plate increases with the increase of the dimensionless flow parameter.Numerical simulation results are in good agreement with the available experimental measurements.
基金sponsored by the National Natural Science Foundation of China (Grant No.10702071)the China Postdoctoral Science Foundation+1 种基金the Shanghai Postdoctoral Scientific Program (Grant No.10R21415800)the Shanghai Leading Academic Discipline Project (Grant No.B302)
文摘It is widely accepted that the singular term plays a leading role in driving domain switching around the crack tip of ferroelectric ceramics.When an applied electric field approaches or even exceeds the coercive one,however,non-singular terms are no longer negligible and the switching of a large or global scale takes place.To analyze the large scale switching,one has to get a full asymptotic solution to the electric field in the vicinity of the crack tip.Take a double cantilever beam specimen as an example.The derivation of the full electric field is simplified as a mixed boundary value problem of an infinite strip containing a semi-infinite impermeable crack.The boundary value problem is solved by an analytic function and a conformal mapping to yield a full electric field solution in a closed form.Based on the full field solution,the large scale domain switching is examined.The switching zones predicted by the large and small scale switching models are illustrated and compared with each other near the tip of a stationary crack.
基金Project supported by the 973 of China (Grant No: 2005cb221304), the National Natural Science Foundation of China(Grant No: 50174011)
文摘The steady-state flow mathematical model of arbitrary shaped homogeneous reservoirs with impermeable barrier is constructed in this paper. By using Boundary Element Method (BEM), the mathematical model is solved. And a streamline generating technique is presented. The figures of streamlines are plotted and analyzed considering the effect of complex boundary and impermeable barriers. Through analyzing it indicates that the size, shape and orientation of impermeable barriers have various degree of influence on the streamlines. So, if there are impermeable barriers in reservoir according to the geological materials, the influence of impermeable barriers must be considered when adjusting flood pattern and injection strategy.
文摘Analytical solution is obtained for the pressure response of a slanted well in a slab reservoir with an impermeable fault. Based on the basic point source solution in an infinite space, the basic point source solution is obtained by using the mirror image principle. Wellbore pressure response of a slanted well is obtained by integration of the basic point source solution along the trajectory of a slanted well and the type curves are computed. The dimensionless bottom hole pressure and type curves are obtained and the sensitivities of related parameters are discussed. The model presented in this paper could be used for the well test analysis of a slanted well in a reservoir bounded by an impermeable fault.
基金National Natural Science Foundation of China(Grant No.22175059)to provide fund for conducting experiments.
文摘The migration of nitroglycerin(NG) has always been the critical issue that harmfully impacts the structural integrity and operational reliability of the solid rocket motor, which is mainly composed by Nitrate Ester Plasticized Polyether(NEPE) propellant/Hydroxyl-terminated Polybutadiene(HTPB) liner/Ethylene Propylene Diene Monomer(EPDM) insulation bonding system. This paper proposes an innovative surface modification method attempting to modify the EPDM insulation layer coated with reduced graphene oxide(RGO), which exhibits ability to weaken the NG absorption by EPDM insulation layer,blocking the pathway of NG migration into EPDM insulation materials. The microstructure of RGO-coated layer was analyzed and the formation mechanism was investigated. The RGO-coated layer is well bonded to the HTPB liner, and its anti-migration performance to NG at different temperatures has been evaluated. Comparing with blank samples under the same storage conditions, the RGO-coated layers can reduce the diffusion coefficient of NG by up to 87.3% and increase the diffusion activation energy of NG by14.8 kJ,mol^(-1). This research provides a new strategy to effectively inhibit NG migration in NEPE propellant/HTPB liner/EPDM insulation bonding system.
文摘This study aimed to devise strategies for alleviating the detrimental impacts of floods in the vicinity of a dike. Experiments were conducted in an open rectangular channel to investigate the flow dynamics under varying dike conditions. To address concerns related to intense whirls and concentrated flow around the dike head, comparative analysis was performed in terms of flow structures and energy reduction around I-shaped and T-shaped dikes with two ratios of wing length (lw) to dike length (ld) (lw/ld = 1.41 and 2.43). The T-shaped dike wings were equipped with diverse designs: angled footing, delta vane, and streamlined tapered, resulting in elevated backwater in front of the dike, reduced velocity, and enhanced energy reduction. The findings indicated that elongating the wing reciprocally affected the depth-averaged velocity (at the dike head and near the adjacent dike bank), concurrently impacting flow deflection, backwater rise, and energy reduction rate. The T-shaped dike, specifically with an angled footing (lw/ld = 2.43), yielded optimal outcomes. These included significant reductions in maximum energy (46%), tip velocity (98%), and dike adjacent bank velocity (90%), as well as significant flow deflection towards the mainstream, outperforming the I-shaped impermeable dike. The proposed solutions exhibit efficacy in mitigating rapid deterioration during floods, securing both the dike head and the neighboring bank to avert failures in high-energy flow.
文摘The constant need for high-strength materials in the construction industry promotes the research of additives that improve the properties of masonry materials. The use of allophane as an additive in concrete and mortar mixtures was implemented to improve their strength and waterproofing, respectively, using compression and water absorption tests according to their corresponding standards (ASTM C1231, ASTM D2938, and ASTM C1585). The samples were evaluated at different concentrations and curing ages. In addition, different sand/cement ratios were considered for the mortar. The results revealed that there was a 9.4% increase in compressive strength in concrete and a 23.7% reduction in water absorption in mortar for the 5:1 ratio. These changes would be the result of the interaction of the nanoporous additive in the atomic crystal structure of the material demonstrating the nanotechnological nature of allophane.
文摘Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.
基金supported by the Eco-environmental Monitoring Network of the Three Gorges Project, Three Gorges Project Construction Committee of the State Council, Chinathe National Natural Science Foundation of China (Nos. 40871147 and 30870410)
文摘The increased application of chemical fertilizers in citrus orchards and the non-point source nitrogen(N) and phosphorus(P)diffusion threaten the fresh water quality of the Three Gorges Reservoir area of China. A 10-year field trial on sloping citrus lands was conducted to evaluate five protection methods for reducing N and P losses: 1) intercropping with perennial white clover(CW); 2) straw mulching of the soil surface(CS); 3) intercropping with yellow daylily contour hedgerows(CH); 4) an impermeable membrane buried in the soil along the contour lines(CM); and 5) intercropping with a rotation of wheat and peanut(CWP). An area of conventional citrus management was also maintained as the control(CK). The results showed that CM and CH were the most effective methods for reducing surface runoff. The sediment yield were reduced at the highest rate by CW and CH and was also significantly reduced by CS. Reduced runoff volume and sediment yield were the crucial mechanism for the reductions in N and P losses. Compared with the control, CW, CS, CH, and CM reduced annual runoff by 9%, 13%, 25%, and 30%, sediment yield by 77%, 55%, 71%, and 28%,N loss by 10%, 23% 36%, and 37%, and P loss by 39%, 31%, 27%, and 25%, respectively. CW, CS, CH, and CM were effective in reducing N and P losses from the sloping citrus land. However, over the long-term, surface soil nutrient accumulation in CW, CS, and CH diminished the benefit of those methods in reducing N and P losses. In addition, CWP increased soil erosion and nutrient loss,which showed that citrus intercropping with other crops was an unsuitable method for citrus sloping land in the Three Gorges area.
文摘We prove the existence of global solutions to the initial-boundary-value problem on the half space R+ for a one-dimensional viscous ideal polytropic gas. Some suitable assumptions are made to guarantee the existence of smooth solutions. Employing the L2- energy estimate, we prove that the impermeable problem has a unique global solutionis.
基金supported by Chinese Government Grant Number 2016M601620NSFC(Grant Number31750110474)
文摘In tropical ecosystems,species with an impermeable seed coat,i.e.physical dormancy(PY),are large in number and their seed coat is considered to be an adaptive trait for species persistence and colonization.However,only little is known about their mechanisms for breaking dormancy.The objective of this study was to understand the importance of seed maturation site and burial location in determining the PY release of Senna auriculata.Freshly collected seeds of S.auriculata from Vellore and Coimbatore,Tamil Nadu,India,germinated to 11±1.5%and19±2.5%respectively and remaining seeds did not imbibe water,thus had PY.Germination of seeds from both sites following hot-water treatment for 30 s and mechanical scarification increased significantly and seeds were able to germinate at a wide-range of temperatures(5–35℃)both in light and darkness.When incubated at 15/60℃for 3 months,dormancy release for seeds collected from Coimbatore(72%)was greater than seeds matured in Vellore(53%).Following 1 year of burial at three different locations,seeds from Coimbatore germinated to higher percentage than Vellore seeds at all locations.In particular,the higher temperature sites released dormancy to greater extent than the lower temperature site.Our results suggest that summer temperatures(>60℃)prevailing in the tropics provide appropriate cues for breaking PY,but this could be greatly affected by the initial state of seeds and the burial environment.