期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem
1
作者 Deming Lei Heen Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期1855-1874,共20页
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed... This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems. 展开更多
关键词 Release time ASSIMILATION imperialist competitive algorithm batch processing machines scheduling
在线阅读 下载PDF
Imperialistic Competitive Algorithm:A metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes 被引量:5
2
作者 Ali Reza Kashani Amir Hossein Gandomi Mehdi Mousavi 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期83-89,共7页
In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap... In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions. 展开更多
关键词 Meta-heuristic algorithms Morgen-stern and price method Non-circular slip surface imperialistic competitive algorithm
在线阅读 下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
3
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ica)
在线阅读 下载PDF
改进ICA求解自动化立体仓库货位分配问题 被引量:1
4
作者 陈兴安 吴超华 +1 位作者 王磊 刘文长 《制造业自动化》 2025年第2期86-95,共10页
为提高自动化立体仓库的货位分配效率,保障其安全稳定运行,建立提高仓库出入库效率、货架稳定性、货物相关性和货物剩余价值为目标的货位优化模型,运用层次分析法将多目标问题转化为单目标问题进行研究。针对该模型提出了一种改进帝国... 为提高自动化立体仓库的货位分配效率,保障其安全稳定运行,建立提高仓库出入库效率、货架稳定性、货物相关性和货物剩余价值为目标的货位优化模型,运用层次分析法将多目标问题转化为单目标问题进行研究。针对该模型提出了一种改进帝国竞争算法,该算法融合了帝国竞争算法与遗传算法的优点,设计了动态调节革命率公式和自然灾变算子增强了殖民地和帝国的多样性。实验结果表明改进帝国竞争算法具有更优的收敛性和搜索范围,有效的解决了不同规模的货位分配问题,求解精度和稳定性优于粒子群算法、遗传算法和标准帝国竞争算法,对提升快销品企业竞争力和立体仓库出入库效率提供了理论依据和实践参考。 展开更多
关键词 自动化立体仓库 帝国竞争算法 遗传算法 货位分配 剩余价值率
在线阅读 下载PDF
Machining Parameters Optimization of Multi-Pass Face Milling Using a Chaotic Imperialist Competitive Algorithm with an Efficient Constraint-Handling Mechanism
5
作者 Yang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第9期365-389,共25页
The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.Howev... The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency. 展开更多
关键词 CHAOTIC imperialist competitive algorithm constraint-handling MECHANISM MULTI-PASS face MILLING machining parameters OPTIMIZATION cutting strategy
在线阅读 下载PDF
Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier
6
作者 Shabana R.Ziyad Liyakathunisa +1 位作者 Eman Aljohani I.A.Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第11期1515-1534,共20页
Autism spectrum disorder(ASD),classified as a developmental disability,is now more common in children than ever.A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection ... Autism spectrum disorder(ASD),classified as a developmental disability,is now more common in children than ever.A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection of autism in children.Parents can seek professional help for a better prognosis of the child’s therapy when ASD is diagnosed under five years.This research study aims to develop an automated tool for diagnosing autism in children.The computer-aided diagnosis tool for ASD detection is designed and developed by a novel methodology that includes data acquisition,feature selection,and classification phases.The most deterministic features are selected from the self-acquired dataset by novel feature selection methods before classification.The Imperialistic competitive algorithm(ICA)based on empires conquering colonies performs feature selection in this study.The performance of Logistic Regression(LR),Decision tree,K-Nearest Neighbor(KNN),and Random Forest(RF)classifiers are experimentally studied in this research work.The experimental results prove that the Logistic regression classifier exhibits the highest accuracy for the self-acquired dataset.The ASD detection is evaluated experimentally with the Least Absolute Shrinkage and Selection Operator(LASSO)feature selection method and different classifiers.The Exploratory Data Analysis(EDA)phase has uncovered crucial facts about the data,like the correlation of the features in the dataset with the class variable. 展开更多
关键词 Autism spectrum disorder feature selection imperialist competitive algorithm LASSO logistic regression random forest
暂未订购
Fault Attribute Reduction of Oil Immersed Transformer Based on Improved Imperialist Competitive Algorithm
7
作者 Li Bian Hui He +1 位作者 Hongna Sun Wenjing Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第6期83-90,共8页
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ... The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer. 展开更多
关键词 transformer fault improved imperialist competitive algorithm rough set attribute reduction BP neural network
在线阅读 下载PDF
Optimal Allocation of STATCOM to Enhance Transient Stability Using Imperialist Competitive Algorithm
8
作者 Ayman Amer Firas MMakahleh +4 位作者 Jafar Ababneh Hani Attar Ahmed Amin Ahmed Solyman Mehrdad Ahmadi Kamarposhti Phatiphat Thounthong 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3425-3446,共22页
With the daily expansion of global energy consumption,developing the power grids is of uttermost importance.However,building a new trans-mission line is costly and time-consuming,so utilizing the same lines with possi... With the daily expansion of global energy consumption,developing the power grids is of uttermost importance.However,building a new trans-mission line is costly and time-consuming,so utilizing the same lines with possible higher transmission capacity is very cost-effective.In this regard,to increase the capacity of the transmission lines,the flexible alternating current transmission system(FACTS)has been widely used in power grids in recent years by industrialized countries.One of the essential topics in electrical power systems is the reactive power compensation,and the FACTS plays a significant role in controlling the reactive power current in the power grid and the system voltage oscillations and stability.When a static synchronous compensator(STATCOM)is embedded in a power system to increase the bus voltage,a supplementary damping controller can be designed to enhance the system oscillation damping.Given the expansion of the grids in the power system,the complexity of their optimization and the extraordinary ability of the imperialist competitive algorithm(ICA)for solving such problems,in this paper,the ICA has been used to determine the optimal position and size of the FACTS devices. 展开更多
关键词 STATCOM FACTS OPTIMIZATION transient stability imperialist competitive algorithm
在线阅读 下载PDF
A New Method for Clustering Based on Development of Imperialist Competitive Algorithm
9
作者 Mohammad Reza Dehghani Zadeh Mohammad Fathian Mohammad Reza Gholamian 《China Communications》 SCIE CSCD 2014年第12期54-61,共8页
Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m... Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm. 展开更多
关键词 data mining homogeneous cluster imperialist competitive algorithm
在线阅读 下载PDF
基于MICA的声级计频率计权数字IIR滤波器设计 被引量:5
10
作者 唐求 吴娟 +2 位作者 邱伟 沈洁 滕召胜 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期78-84,共7页
针对双线性变换法在设计声级计频率计权数字滤波器时存在固有频率失真问题,提出一种基于改进帝国竞争算法的数字IIR滤波器设计方法.为避免帝国竞争算法出现早熟收敛而陷入局部最优的问题,在帝国竞争算法同化阶段引入混沌函数来增大搜索... 针对双线性变换法在设计声级计频率计权数字滤波器时存在固有频率失真问题,提出一种基于改进帝国竞争算法的数字IIR滤波器设计方法.为避免帝国竞争算法出现早熟收敛而陷入局部最优的问题,在帝国竞争算法同化阶段引入混沌函数来增大搜索范围,与此同时,在帝国竞争阶段引入克隆进化算子,引导算法向IIR滤波器参数最优解方向搜索,得到改进帝国竞争算法.在研究声级计A、C计权的IIR滤波器误差来源的基础上,利用改进帝国竞争算法对声级计频率计权数字IIR滤波器系数进行寻优求解,构建基于改进帝国竞争算法的频率计权数字IIR滤波器优化模型.仿真与实验结果表明,本文提出的数字滤波器设计方法精度较高,且滤波器的误差能控制在10-3dB数量级范围内.在噪声环境下不同声信号级进行的频率计权测试结果表明,改进帝国竞争算法测试的声信号级的计权误差能维持在10-2 dB数量级范围内,完全满足国家标准GB/T3241—2010对1级声级计的设计要求. 展开更多
关键词 声级计 频率计权 数字IIR滤波器设计 帝国竞争算法 混沌函数 克隆进化
在线阅读 下载PDF
基于改进ICA算法的LBFFSP问题研究 被引量:6
11
作者 韩忠华 孙越 史海波 《信息与控制》 CSCD 北大核心 2017年第4期474-482,共9页
为了解决带有限缓冲区的柔性流水车间排产优化问题(Limited-Buffer Flexible Flow-shop Scheduling Problem,LBFFSP),首先建立LBFFSP的数学模型,提出了一种改进帝国竞争算法(improved imperialist competitive algorithm,IICA)作为全局... 为了解决带有限缓冲区的柔性流水车间排产优化问题(Limited-Buffer Flexible Flow-shop Scheduling Problem,LBFFSP),首先建立LBFFSP的数学模型,提出了一种改进帝国竞争算法(improved imperialist competitive algorithm,IICA)作为全局优化算法,在标准帝国竞争算法基础上,引入模拟退火思想,扩大算法搜索范围,并加入离散化处理操作、改革操作、以及精英个体保留策略三处改进.为进一步提高算法搜索最优解效率,设计了一种基于优化目标的初始种群建立方法,并加入基于汉明距离的个体选择机制,以提高初始种群中初始解的质量.设计仿真实验,对算法中的参数进行分析探讨,确定最佳参数值.最后通过实例测试,将IICA算法与其他算法进行对比研究,验证了IICA算法对于解决柔性流水车间有限缓冲区的排产优化问题的有效性. 展开更多
关键词 有限缓冲区 改进帝国竞争算法 构建初始种群 汉明距离
原文传递
基于FAST-ICA的城市轨道交通乘客路径选择方法 被引量:2
12
作者 连晓峰 叶璐 +2 位作者 王炎 贾利民 马慧茹 《系统仿真学报》 CAS CSCD 北大核心 2019年第8期1692-1701,共10页
提出一种基于改进帝国主义竞争算法(FAST-ICA)的城市轨道交通乘客路径选择方法,以提高乘客路径选择的效率。选取6种影响乘客路径选择的关键因素,在此基础上,构建广义出行费用函数,并建立乘客路径选择模型;通过改进帝国主义竞争算法(ICA... 提出一种基于改进帝国主义竞争算法(FAST-ICA)的城市轨道交通乘客路径选择方法,以提高乘客路径选择的效率。选取6种影响乘客路径选择的关键因素,在此基础上,构建广义出行费用函数,并建立乘客路径选择模型;通过改进帝国主义竞争算法(ICA)中的帝国竞争方式,在ICA算法的每次迭代中快速瓜分最弱帝国集团,以加快收敛速度;基于所提出的FAST-ICA算法求解乘客在不同环境下的路径选择问题,并进行深入分析。实验结果表明,FAST-ICA算法具有良好的稳定性,且收敛速度较快。 展开更多
关键词 城市轨道交通 关键影响因素选取 路径选择模型 快速帝国主义竞争算法
原文传递
基于ICA阈值优化耦合信息熵的边缘提取算法 被引量:3
13
作者 郭健 李智 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第9期150-155,共6页
为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的... 为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的分段阈值选择合适的阈值,引入了帝国主义竞争(imperialist competitive algorithm,ICA)优化算法,计算图像的最优阈值,根据获得的最优阈值将每个图像子块划分为不同的均匀区域;最后,通过计算每个均匀区域的信息熵,利用信息熵检测所有处于不同均匀区域的边界像素来提取边缘.实验结果表明:与当前常用的边缘提取算法比较,本文算法具有更高的品质因数与边缘连续性,能够抑制过于微小和琐碎的细节,突出有效的边缘信息,边缘定位精度高且平滑连贯,能够准确地提取目标轮廓. 展开更多
关键词 边缘提取 帝国主义竞争算法 分段阈值 信息熵 灰度分布模式 均匀区域
原文传递
基于改进ICA算法的实时任务容错调度机制 被引量:3
14
作者 张宏 臧国轻 《河南大学学报(自然科学版)》 CAS 2015年第5期604-611,共8页
传统的启发式算法解决容错实时任务调度时,在性能和系统利用率方面表现得不太理想,提出一种新的基于主副版本实时任务容错机制的帝国竞争算法.该算法把容错知识和帝国竞争算法相融合,利用适应度共享技术对国家的适应度进行调整,以提高... 传统的启发式算法解决容错实时任务调度时,在性能和系统利用率方面表现得不太理想,提出一种新的基于主副版本实时任务容错机制的帝国竞争算法.该算法把容错知识和帝国竞争算法相融合,利用适应度共享技术对国家的适应度进行调整,以提高全局寻优能力,有效避免算法早熟收敛.实验结果表明:与同类算法相比,该算法在系统利用率和效率上表现出较好的特性. 展开更多
关键词 实时系统 PB策略 帝国竞争算法 容错
原文传递
资源共享平台大数据负载均衡性控制方法
15
作者 辛春花 闫凤 何婷 《现代电子技术》 北大核心 2025年第20期160-164,共5页
资源共享平台的大数据具有多样性和不确定性的特点,不同类型的数据需求各异,如果不对这些数据进行分类和处理,就可能导致某些类型的数据处理任务集中在少数资源节点上,而其他节点则相对空闲,从而造成负载不均衡。为此,提出一种资源共享... 资源共享平台的大数据具有多样性和不确定性的特点,不同类型的数据需求各异,如果不对这些数据进行分类和处理,就可能导致某些类型的数据处理任务集中在少数资源节点上,而其他节点则相对空闲,从而造成负载不均衡。为此,提出一种资源共享平台大数据负载均衡性控制方法。将无状态的资源共享平台大数据按照特征进行切片,更清晰地展现出数据之间的差异性。采用目标函数将切片处理后的数据应用于平台大数据差异性的量化处理中,确保各个资源节点能够均衡地处理任务。通过帝国主义竞争算法对大数据进行寻优,将所有初始化的个体都称作国家,并按照国家势力分成帝国主义国家及殖民地两种,通过竞争和合作来找到最优解,确定最优资源共享平台大数据负载均衡性控制方案,从而更好地处理数据的多样性和不确定性,实现资源共享平台大数据负载均衡性控制。实验结果表明,所提方法的吞吐量达到了700 Mb/s,且在到达率为0.40%之前,其业务阻塞率一直处于接近0的状态,说明该方法可以确保资源共享平台大数据的吞吐量并有效降低业务阻塞率,负载均衡性的控制效果较好。 展开更多
关键词 资源共享平台 大数据 负载均衡性 帝国主义竞争算法 切片处理 差异化量化处理
在线阅读 下载PDF
基于帝国竞争算法的多金属矿山边界品位优化研究
16
作者 许倩倩 郭进平 +2 位作者 王小林 刘亚雄 薛涛 《矿产保护与利用》 2025年第1期8-14,共7页
边界品位是矿山开采的一个重要决策参数,在多金属矿山开采项目中,确定合理的边界品位是为后续开采获取更大经济效益的基础。针对某矿山采选二阶段生产流程,以最大净现值法为基础,利用综合品位构建了基于帝国竞争算法(ICA)算法的多金属... 边界品位是矿山开采的一个重要决策参数,在多金属矿山开采项目中,确定合理的边界品位是为后续开采获取更大经济效益的基础。针对某矿山采选二阶段生产流程,以最大净现值法为基础,利用综合品位构建了基于帝国竞争算法(ICA)算法的多金属矿山边界品位动态优化模型,实现了该银铅矿最佳边界品位的动态确定。实例应用表明:该模型适用于多金属矿山边界品位的确定。在矿山寿命期间,通过ICA算法所确定的铅金银多金属矿最佳铅边界品位为2.619%,后期下降至1.331%,矿山总净现值为127 457.53万元;对比Lane法,该模型具有全局搜索能力,对矿山后期边界品位指标的动态优化更具优势,为矿山确定合理的边界品位指标提供了新思路。 展开更多
关键词 多金属矿 ica算法 综合品位 最大净现值法 边界品位
在线阅读 下载PDF
基于透镜反向学习和差分进化的帝国竞争改进算法
17
作者 李斌 潘智成 《计算机工程》 北大核心 2025年第6期155-173,共19页
针对帝国竞争算法(ICA)收敛过快导致求解高维复杂问题容易陷入局部最优以及全局寻优能力不足等问题,提出一种基于透镜反向学习和差分进化的帝国竞争改进算法LODE-IICA。首先,引入透镜反向学习差分进化机制,周期性地为算法种群提供新的... 针对帝国竞争算法(ICA)收敛过快导致求解高维复杂问题容易陷入局部最优以及全局寻优能力不足等问题,提出一种基于透镜反向学习和差分进化的帝国竞争改进算法LODE-IICA。首先,引入透镜反向学习差分进化机制,周期性地为算法种群提供新的进化方式和平衡各个帝国势力,帮助算法种群跳出局部最优;其次,将精英保留策略植入到算法演化中,重新分配殖民地,维持种群多样性;最后,引入动态同化系数,协调算法在不同阶段探索,提高算法的稳定性。仿真实验中,采用标准函数测试集、CEC2017测试集及CEC2020测试集检验LODE-IICA在多个维度下对不同类型函数的寻优能力。选取在标准函数测试集、CEC2017测试集和CEC2020测试集中具有代表性的15种改进算法与LODE-IICA进行实验结果比较,结果显示,LODE-IICA引入的机制在大多数情况下有效地提高了算法性能,同时具备较好的收敛速度和寻优能力。 展开更多
关键词 帝国竞争算法 透镜反向学习 差分进化 精英保留 同化系数
在线阅读 下载PDF
基于帝国竞争演化与深度强化学习的背包问题优化算法
18
作者 李斌 潘智成 《计算机工程与应用》 北大核心 2025年第22期92-113,共22页
0-1背包问题(knapsack problem,KP)是组合优化领域中一个具有广泛应用的经典NP难问题。针对原始帝国竞争算法(imperialist competition algorithm,ICA)在高维复杂问题中易陷入局部最优、全局探索能力不足的局限性,提出一种改进帝国竞争... 0-1背包问题(knapsack problem,KP)是组合优化领域中一个具有广泛应用的经典NP难问题。针对原始帝国竞争算法(imperialist competition algorithm,ICA)在高维复杂问题中易陷入局部最优、全局探索能力不足的局限性,提出一种改进帝国竞争算法与融入多头注意力机制深度强化学习方法相结合的优化算法(improved imperialist competition algorithm incorporating deep reinforcement learning,IICA-DRL)。该算法通过引入插入交叉同化算子、双位变异机制和援助机制增强局部搜索能力和种群多样性,并利用多头注意力机制的深度强化学习模型对IICA高质量解进行优化,进一步增强了个体解的质量和算法的全局勘探能力。在4个测试集中的62个0-1 KP算例上进行性能评估,结果显示其中54个算例求解达到最优解。与20种元启发式算法进行了性能对比,实验结果表明,IICADRL算法具有较强的稳定性和有效性,初步验证了改进策略的可行性,为ICA求解背包问题提供了一个有效的算法设计方案。 展开更多
关键词 0-1背包问题 帝国竞争算法 同化算子 多样性机制 多头注意力机制 深度强化学习
在线阅读 下载PDF
Optimizing Stand-Alone PV Systems:A Metaheuristic-Enhanced Fuzzy Approach for Adaptive MPPT
19
作者 Tina Samavat Mostafa Nazari +1 位作者 Lin Fuhong Lei Yang 《China Communications》 2025年第1期61-74,共14页
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe... This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental conditions.We propose a robust FLC with low computational complexity by reducing the number of membership functions and rules.To optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the FLC.We evaluate the proposed FLC in various panel configurations under different environmental conditions.The results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios. 展开更多
关键词 genetic algorithm imperialist competitive algorithm invasive weed algorithm maximum power point tracking
在线阅读 下载PDF
基于ICA-NN的短期风功率预测研究
20
作者 周专 姚秀萍 +2 位作者 王维庆 任华 申盛召 《四川电力技术》 2013年第5期5-8,共4页
随着风电大规模的接入电网,风电对电网的影响越来越大。由于风电出力具有随机性、间歇性和不可控性,导致风电对电网调度运行带来巨大的挑战。为了充分利用风电,必须将风电由未知变为基本已知,提高对风电出力的预测精度。提出一种基于帝... 随着风电大规模的接入电网,风电对电网的影响越来越大。由于风电出力具有随机性、间歇性和不可控性,导致风电对电网调度运行带来巨大的挑战。为了充分利用风电,必须将风电由未知变为基本已知,提高对风电出力的预测精度。提出一种基于帝国主义竞争算法的神经网络(ICA-NN)方法来提高短期风功率预测的精度。在该方法中,首先,建立一个基于多层感知器(MLP)人工神经网络的风速预测模型,然后,用帝国主义竞争算法优化神经网络中的权值。将该预测方法应用于新疆某风电场,验证了该方法应用于短期风功率预测的有效性,证明了该方法可以提高短期风功率预测的精度。 展开更多
关键词 帝国主义的竞争算法-神经网络 数值天气预报 短期风功率预测 风电场
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部