This paper studies several performance metrics of a wireless-powered decode-and-forward(DF) relay network with imperfect channel state information(CSI). In particular, based on the time switching(TS) protocol, the ene...This paper studies several performance metrics of a wireless-powered decode-and-forward(DF) relay network with imperfect channel state information(CSI). In particular, based on the time switching(TS) protocol, the energy-constrained relay harvesting energy from a power beacon(PB), and uses that harvested energy to forward the source information to destination. The closedform expression of the outage probability is firstly derived over Rayleigh fading channels. Then, the asymptotic analysis, throughput as well as the symbol error probability(SEP) are derived based on the expression of the outage probability. Next, both transmission power of the source and the power beacon are optimized through the throughput optimization. Finally, simulations are conducted to corroborate our theoretical analysis, and to reveal the impact of the transmission power of the source and PB as well as the imperfect CSI on the system performance.展开更多
基金support by the National Natural Science Foundation of China (nos. 61571340, 61301170)the Fundamental Research Funds for the Central Universities of China under Grant JB150109the 111 Project under Grant B08038
文摘This paper studies several performance metrics of a wireless-powered decode-and-forward(DF) relay network with imperfect channel state information(CSI). In particular, based on the time switching(TS) protocol, the energy-constrained relay harvesting energy from a power beacon(PB), and uses that harvested energy to forward the source information to destination. The closedform expression of the outage probability is firstly derived over Rayleigh fading channels. Then, the asymptotic analysis, throughput as well as the symbol error probability(SEP) are derived based on the expression of the outage probability. Next, both transmission power of the source and the power beacon are optimized through the throughput optimization. Finally, simulations are conducted to corroborate our theoretical analysis, and to reveal the impact of the transmission power of the source and PB as well as the imperfect CSI on the system performance.