This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulati...This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer.Both the propagator and interface matrices were formulated to determine the recursive fields.Subsequently,the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate.Dispersion curves,mode shapes,and natural frequencies were calculated for sandwich plates composed of BaTiO3 and CoFe2O4.Numerical simulations revealed that both interface stress and the nonlocal effect influenced the tuning of the dispersion curve and mode shape for the given layup.The nonlocal effect caused a significant decrease in the dispersion curves,particularly in the high-frequency regions.Additionally,compared to the nonlocal effect,the interface stress exerted a greater influence on the mode shapes.The generalized analytical framework developed in this study provides an effective tool for both the theoretical analysis and practical design of MEE composite laminates.展开更多
Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the pr...Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the proposed scheme,SM is used to activate one antenna from the transmit antennas,and the information symbols will be transmitted with the designed AN at each timeslot.By utilizing the legitimate channel’s imperfect CSI,AN is generated across two adjacent timeslots.Because the CSI is known at the legitimate receiver,then it can perfectly cancel the AN.However,the eavesdropper knows nothing of the legitimate channel’s CSI,so it can not recover any useful information from the AN.At the receiver,a new detection scheme that detects across two adjacent timeslots is also proposed.With imperfect CSI,the secrecy rate of the proposed scheme is derived over Rayleigh fading channels in order to investigate the performance.Moreover,based on the secrecy performance analysis,the lower bound of the ergodic secrecy rate(ESR),the corresponding closed form of the lower bound,and the approximated expression are also derived.The simulation results verified in this paper prove that the proposed scheme with imperfect CSI can achieve satisfactory performance.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer lat...The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.展开更多
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ...Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
Introduction.Osteogenesis imperfecta(OI),also known as brittle bone disease,is a phenotypically diverse disorder due to deficiencies in the synthesis of type I collagen.OI is a disease characterized by brittle bones a...Introduction.Osteogenesis imperfecta(OI),also known as brittle bone disease,is a phenotypically diverse disorder due to deficiencies in the synthesis of type I collagen.OI is a disease characterized by brittle bones and frequent fractures with minimal trauma leading to skeletal deformities[1].Its incidence is estimated at 1 per 20,000 births.Though rare,it is the most common inherited disorder of connective tissue.Principally,it affects bone,but it also impacts other tissues rich in type I collagen,such as joints,eyes,ears,skin,and teeth.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonli...Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs.In practical applications,the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices,where deterministic holes can be utilized to accommodate hard chips,thereby increasing the filling ratio of the device system.Therefore,it is essential to understand how the hole-type imperfection affects the stretchability of soft network materialswith various geometric constructions.Thiswork presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures,through combined computational and experimental studies.A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections,as compared to the case of perfect soft network materials.Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials.The soft triangular and Kagome network materials,especially with the arc angle in the range of(30?,60?),are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures.Differently,the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials.展开更多
In smart industrial systems,in many cases,a fault can be captured as an event to represent the distinct nature of subsequent changes.Event-based fault diagnosis techniques are capable model-based methods for diagnosin...In smart industrial systems,in many cases,a fault can be captured as an event to represent the distinct nature of subsequent changes.Event-based fault diagnosis techniques are capable model-based methods for diagnosing faults from a sequence of observable events executed by the system under diagnosis.Most event-based diagnosis techniques rely on perfect observations of observable events.However,in practice,it is common to miss an observable event due to a problem in sensorreadings or communication/transmission channels.This paper develops a fault diagnosis tool,referred to as diagnoser,which can robustly detect,locate,and isolate occurred faults.The developed diagnoser is resilient against missed observations.A missed observation is detected from its successive sequence of events.Upon detecting a missed observation,the developed diagnoser automatically resets and then,asynchronously resumes the diagnosis process.This is achieved solely based on postreset/activation observations and without interrupting the performance of the system under diagnosis.New concepts of asynchronous detectability and asynchronous diagnosability are introduced.It is shown that if asynchronous detectability and asynchronous diagnosability hold,the proposed diagnoser is capable of diagnosing occurred faults under imperfect observations.The proposed technique is applied to diagnose faults in a manufacturing process.Illustrative examples are provided to explain the details of the proposed algorithm.The result paves the way towards fostering resilient cyber-physical systems in Industry4.0 context.展开更多
A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize cu...A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.展开更多
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular ...The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.展开更多
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and...A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.展开更多
A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial i...A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial imperfection and the strength parameters are considered as random variables. Ply-level failure probability is evaluated by the first order reliability method (FORM) together with the Tsai-Wu strength criterion and Tan criterion. Current stresses in the laminated structure are calculated by the classical lamination theory with the stiffness modified based on the last step ply failure. Probabilistically dominant ply-level failure sequences leading to overall system failure are identified, based on which the system failure probability is estimated. A numerical example is presented to demonstrate the methodology proposed. Through parameter studies it is shown that the deviation of the initial imperfection and some of the strength parameters largely influence the system reliability.展开更多
As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of im...As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of imperfect maintenance activities usually assumed that maintenance activities have a single influence on the degradation level or degradation rate, but not on both.Aimed at this problem, this paper proposes a new degradation modeling and RUL estimation method taking the influence of imperfect maintenance activities on both the degradation level and the degradation rate into account. Toward this end, a stochastic degradation model considering imperfect maintenance activities is firstly constructed based on the diffusion process. Then, the Probability Density Function(PDF) of the RUL is derived by the convolution operator under the concept of First Hitting Time(FHT). To implement the proposed RUL estimation method,the Maximum Likelihood Estimation(MLE) is utilized to estimate the degradation related parameters based on the Condition Monitoring(CM) data, while the Bayesian method is utilized to estimate the maintenance related parameters based on the maintenance data. Finally, a numerical example and a practical case study are provided to demonstrate the superiority of the proposed method. The experimental results show that the proposed method could greatly improve the RUL estimation accuracy for the degrading equipment subjected to imperfect maintenance activities.展开更多
The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. I...The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.展开更多
Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) mea...Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
基金supported by the Ministry of Science and Technology Taiwan under Grant No.MOST 109-2628-E-009-002-MY3.
文摘This study aims to investigate the propagation of harmonic waves in nonlocal magneto-electro-elastic(MEE)laminated composites with interface stress imperfections using an analytical approach.The pseudo-Stroh formulation and nonlocal theory proposed by Eringen were adopted to derive the propagator matrix for each layer.Both the propagator and interface matrices were formulated to determine the recursive fields.Subsequently,the dispersion equation was obtained by imposing traction-free and magneto-electric circuit open boundary conditions on the top and bottom surfaces of the plate.Dispersion curves,mode shapes,and natural frequencies were calculated for sandwich plates composed of BaTiO3 and CoFe2O4.Numerical simulations revealed that both interface stress and the nonlocal effect influenced the tuning of the dispersion curve and mode shape for the given layup.The nonlocal effect caused a significant decrease in the dispersion curves,particularly in the high-frequency regions.Additionally,compared to the nonlocal effect,the interface stress exerted a greater influence on the mode shapes.The generalized analytical framework developed in this study provides an effective tool for both the theoretical analysis and practical design of MEE composite laminates.
基金supported in part by the Natural Science Project of Hubei Province under Grant 2023AFB383in part by the Open Foundation of Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System under Grant HBSEES202107.
文摘Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the proposed scheme,SM is used to activate one antenna from the transmit antennas,and the information symbols will be transmitted with the designed AN at each timeslot.By utilizing the legitimate channel’s imperfect CSI,AN is generated across two adjacent timeslots.Because the CSI is known at the legitimate receiver,then it can perfectly cancel the AN.However,the eavesdropper knows nothing of the legitimate channel’s CSI,so it can not recover any useful information from the AN.At the receiver,a new detection scheme that detects across two adjacent timeslots is also proposed.With imperfect CSI,the secrecy rate of the proposed scheme is derived over Rayleigh fading channels in order to investigate the performance.Moreover,based on the secrecy performance analysis,the lower bound of the ergodic secrecy rate(ESR),the corresponding closed form of the lower bound,and the approximated expression are also derived.The simulation results verified in this paper prove that the proposed scheme with imperfect CSI can achieve satisfactory performance.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
文摘The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.
基金supported by the National Natural Science Foundation of China (81972034,92068104 and 82002262 to R.X.)the National Key R&D Program of China (2020YFA0112900 to R.X.)+5 种基金Project of Xiamen Cell Therapy Research Center (3502Z20214001 to R.X.)supported by a the NIH grant of US (R01AR075585,R01HD115274,R01CA282815 to M.B.G.)Career Award for Medical Scientists from the Burroughs Wellcome Funda Pershing Square Sohn Cancer Research Alliance and the Maximizing Innovation in Neuroscience Discovery (MIND)Prizesupported by a Jump Start Research Career Development Award from Weill Cornell Medicinea Study Abroad Scholarships from the Mogam Science Scholarship Foundation。
文摘Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
文摘Introduction.Osteogenesis imperfecta(OI),also known as brittle bone disease,is a phenotypically diverse disorder due to deficiencies in the synthesis of type I collagen.OI is a disease characterized by brittle bones and frequent fractures with minimal trauma leading to skeletal deformities[1].Its incidence is estimated at 1 per 20,000 births.Though rare,it is the most common inherited disorder of connective tissue.Principally,it affects bone,but it also impacts other tissues rich in type I collagen,such as joints,eyes,ears,skin,and teeth.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
基金supported by a grant from the Institute for Guo Qiang.Tsinghua University(Grant No.2019GQG1012)Y.Z.acknowledges support from the National Natural Science Foundation of China(Grant Nos.11722217 and 11921002)+1 种基金the Tsinghua University Initiative Scientific Research Program(#2019Z08QCX10)the Henry Fok Education Foundation.
文摘Developments of soft network materials with rationally distributed wavy microstructures have enabled many promising applications in bio-integrated electronic devices,due to their abilities to reproduce precisely nonlinear mechanical properties of human tissues/organs.In practical applications,the soft network materials usually serve as the encapsulation layer and/or substrate of bio-integrated electronic devices,where deterministic holes can be utilized to accommodate hard chips,thereby increasing the filling ratio of the device system.Therefore,it is essential to understand how the hole-type imperfection affects the stretchability of soft network materialswith various geometric constructions.Thiswork presents a systematic investigation of the imperfection sensitivity of mechanical properties in soft network materials consisting of horseshoe microstructures,through combined computational and experimental studies.A factor of imperfection insensitivity of stretchability is introduced to quantify the influence of hole imperfections,as compared to the case of perfect soft network materials.Such factor is shown to have different dependences on the arc angle and normalized width of horseshoe microstructures for triangular network materials.The soft triangular and Kagome network materials,especially with the arc angle in the range of(30?,60?),are found to be much more imperfection insensitive than corresponding traditional lattice materials with straight microstructures.Differently,the soft honeycomb network materials are not as imperfection insensitive as traditional honeycomb lattice materials.
基金the National Science Foundation(NSF)(1832110 and 2000320)Air Force Research Laboratory(AFRL)and Office of the Secretary of Defense(OSD)(FA8750-15-2-0116).
文摘In smart industrial systems,in many cases,a fault can be captured as an event to represent the distinct nature of subsequent changes.Event-based fault diagnosis techniques are capable model-based methods for diagnosing faults from a sequence of observable events executed by the system under diagnosis.Most event-based diagnosis techniques rely on perfect observations of observable events.However,in practice,it is common to miss an observable event due to a problem in sensorreadings or communication/transmission channels.This paper develops a fault diagnosis tool,referred to as diagnoser,which can robustly detect,locate,and isolate occurred faults.The developed diagnoser is resilient against missed observations.A missed observation is detected from its successive sequence of events.Upon detecting a missed observation,the developed diagnoser automatically resets and then,asynchronously resumes the diagnosis process.This is achieved solely based on postreset/activation observations and without interrupting the performance of the system under diagnosis.New concepts of asynchronous detectability and asynchronous diagnosability are introduced.It is shown that if asynchronous detectability and asynchronous diagnosability hold,the proposed diagnoser is capable of diagnosing occurred faults under imperfect observations.The proposed technique is applied to diagnose faults in a manufacturing process.Illustrative examples are provided to explain the details of the proposed algorithm.The result paves the way towards fostering resilient cyber-physical systems in Industry4.0 context.
基金The National Natural Science Foundation of China(No.71371050)
文摘A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.
文摘The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.
基金supported by the National Basic Research Program of China(2014CB049000,2014CB046506)the Project funded by China Postdoctoral Science Foundation(2014M551070)+2 种基金the National Natural Science Foundation of China(11372062,91216201,11128205)the Fundamental Research Funds for the Central Universities(DUT14RC(3)028)the LNET Program(LJQ2013005)
文摘A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.
基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministrythe Research Foundation of Huazhong University of Science and Technology
文摘A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial imperfection and the strength parameters are considered as random variables. Ply-level failure probability is evaluated by the first order reliability method (FORM) together with the Tsai-Wu strength criterion and Tan criterion. Current stresses in the laminated structure are calculated by the classical lamination theory with the stiffness modified based on the last step ply failure. Probabilistically dominant ply-level failure sequences leading to overall system failure are identified, based on which the system failure probability is estimated. A numerical example is presented to demonstrate the methodology proposed. Through parameter studies it is shown that the deviation of the initial imperfection and some of the strength parameters largely influence the system reliability.
基金co-supported by the National Science Foundation of China(NSFC)(Nos.61573365,61603398,61374126,61473094,and 61773386)the Young Talent Fund of University Association for Science and Technology in Shaanxi,Chinathe Young Elite Scientists Sponsorship Program(YESS)by China Association for Science and Technology(CAST)
文摘As the key part of Prognostics and Health Management(PHM), Remaining Useful Life(RUL) estimation has been extensively investigated in recent years. Current RUL estimation studies considering the intervention of imperfect maintenance activities usually assumed that maintenance activities have a single influence on the degradation level or degradation rate, but not on both.Aimed at this problem, this paper proposes a new degradation modeling and RUL estimation method taking the influence of imperfect maintenance activities on both the degradation level and the degradation rate into account. Toward this end, a stochastic degradation model considering imperfect maintenance activities is firstly constructed based on the diffusion process. Then, the Probability Density Function(PDF) of the RUL is derived by the convolution operator under the concept of First Hitting Time(FHT). To implement the proposed RUL estimation method,the Maximum Likelihood Estimation(MLE) is utilized to estimate the degradation related parameters based on the Condition Monitoring(CM) data, while the Bayesian method is utilized to estimate the maintenance related parameters based on the maintenance data. Finally, a numerical example and a practical case study are provided to demonstrate the superiority of the proposed method. The experimental results show that the proposed method could greatly improve the RUL estimation accuracy for the degrading equipment subjected to imperfect maintenance activities.
基金supported by National Natural Science Foundation of China (Grant No. 51005041)Fundamental Research Funds for the Central Universities of China (Grant No. N090303005)Key National Science & Technology Special Project on High-Grade CNC Machine Tools and Basic Manufacturing Equipment of China (Grant No. 2010ZX04014-014)
文摘The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.
基金National Natural Science Foundation of China (Grants 11402277 and 11332011) for financial support
文摘Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.