For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also ...For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also calculate the figure of merit, which is defined as the ratio of the real and the imaginary refraction components, and compare it with those of fishnet metamaterials. The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum. Also, we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies. Therefore, this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands.展开更多
The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the rad...The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.展开更多
In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length...In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length parameter is introduced to weaken the discontinuous singularity of governing equations, and an efficient pseudo arc-length numerical method of multiphase compressible flow is proposed. Then the accuracy and adaptive moving mesh property of this algorithm are tested. Finally, the multiphase pseudo arc-length numerical method is applied to the problem of interaction between shock wave and the deformable particle. Through the flow flied change and data analysis of key points, it can be found the complex wave structures are presented after the interactions between the planar incident shock wave and the metal particle, and all these wave interactions lead to the movement and deformation of metal particle, and then the deformed particle will affect the transmitted shock wave back. According to the discussion, the deformation of particle and shock wave propagation in the particle are determined by the shock wave impedance of each medium and shock speed, so the interaction between shock wave and the deformable particle can be studied on the basis of physical properties of explosive mediums.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61205011
文摘For a previously simulated eight-broadband negative-refraction-index chiral metamaterial, we use S-parameter retrieval methods to determine the complex effective permittivity, permeability, and the impedance. We also calculate the figure of merit, which is defined as the ratio of the real and the imaginary refraction components, and compare it with those of fishnet metamaterials. The simulation results show that our chiral metamaterial exhibits high transmission and impedance matching to a vacuum. Also, we determine that the electric and magnetic dipoles of the surface plasmons play an important role in determining the nine resonance frequencies. Therefore, this investigation provides an experimental basis for developing metamaterial devices with multiple and broad resonance frequency bands.
文摘The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11390363,11325209 and 11221202)
文摘In this paper, we combine the pseudo arc-length numerical method with the mathematical model of multiphase compressible flow for simulating the shock wave interaction with a deformable particle. Firstly, an arc-length parameter is introduced to weaken the discontinuous singularity of governing equations, and an efficient pseudo arc-length numerical method of multiphase compressible flow is proposed. Then the accuracy and adaptive moving mesh property of this algorithm are tested. Finally, the multiphase pseudo arc-length numerical method is applied to the problem of interaction between shock wave and the deformable particle. Through the flow flied change and data analysis of key points, it can be found the complex wave structures are presented after the interactions between the planar incident shock wave and the metal particle, and all these wave interactions lead to the movement and deformation of metal particle, and then the deformed particle will affect the transmitted shock wave back. According to the discussion, the deformation of particle and shock wave propagation in the particle are determined by the shock wave impedance of each medium and shock speed, so the interaction between shock wave and the deformable particle can be studied on the basis of physical properties of explosive mediums.