To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedanc...To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.展开更多
High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform wa...High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.展开更多
Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses t...Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability.展开更多
Oscillation accidents emerge in power systems inte grated with increasing penetration of renewable energy sources.The impedance of electromagnetic dynamics is investigated in recent years,where the mechanical dynamics...Oscillation accidents emerge in power systems inte grated with increasing penetration of renewable energy sources.The impedance of electromagnetic dynamics is investigated in recent years,where the mechanical dynamics are neglected.So far,the low-frequency oscillations are not well addressed with the impedance analysis method.A novel analytical impedance is formulated and implemented for wind energy conversion sys tem consisting of wind turbine generators(WTGs)and wind farm,which fills the gap in the mechanical dynamics of the im pedance.Instead of assuming constant values,the electrome chanical dynamics of the rotor speed and the pitch angle are in volved in the WTG impedance.Besides,the impedance frame work is generally and modularly designed and is adaptive to different operating regions.With the developed analytical im pedance,the stability assessment can cover the low-frequency oscillations,providing an in-depth insight into the mechanical parameters influencing the small-signal stability performance.As an application,the impedance characteristic and stability performance of systems with active power reserve for grid sup porting are analyzed and optimized.Furthermore,the shafting torsional vibrations of WTGs in wind farms are analyzed with modal decomposition and the low-frequency impedance model.The improved accuracy of the developed analytical impedance is illustrated by comparison with commonly used impedance,which ignores the coupling between the electrical and mechani cal dynamics.It is proven that the mechanical dynamics have a significant influence on the impedance,particularly in the lowfrequency range.Experimental validation is carried out to vali date the low-frequency impedance model and the stability per formance.展开更多
In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical facto...In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.展开更多
In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power s...In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.展开更多
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
This two-part paper presents methods to predict,characterize and ensure the stability of data center power systems based on impedance analysis.The work was motivated by recent power system resonance incidents in new d...This two-part paper presents methods to predict,characterize and ensure the stability of data center power systems based on impedance analysis.The work was motivated by recent power system resonance incidents in new data centers.Part I presents new input impedance models for single-phase power supply units(PSUs)to enable this application.Existing impedance models of single-phase PSU cannot meet the requirements of this application because they exclude DC voltage control that affects system stability at low frequency,or are in a dq reference frame that cannot handle the complexity of data center power systems.The developed new models include DC bus dynamics and are directly in the phase domain to simplify system stability analysis,avoiding the need for multiple-input-multiple-output(MIMO)system models and the generalized Nyquist criterion that are difficult to apply but necessary with dq-frame models.Both the converter and system level models also include the coupled current response that is characteristic of AC-DC converters and important for system stability at low frequency.The simple form of the models and system stability analysis directly in the phase domain also make it possible to develop new PSU design methods and performance specifications that together will ensure the stability of new data center power systems.The developed models are validated by laboratory measurements and are used in Part II of the work to study data center power system stability.展开更多
This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et a...This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.展开更多
In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectro...In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.展开更多
Diode rectifier unit(DRU)-based high-voltage direct current(HVDC)transmissionsystems areeffectivein achieving the stableandeconomical operation of offshore wind-powergeneration.Considering theuncontrollable characteri...Diode rectifier unit(DRU)-based high-voltage direct current(HVDC)transmissionsystems areeffectivein achieving the stableandeconomical operation of offshore wind-powergeneration.Considering theuncontrollable characteristicsof DRUs,a grid-forming(GFM)strategy forwind-turbine converters isnecessary to support offshore AC voltageand frequency.However,the active power-synchronization control in traditional GFM converters is unsuitable for DRU-based GFM converters.Thus,the stability issue for DRU-based HVDC systems involving DRU-based GFM and grid-following(GFL)converters has not yet been addressed.To solve these issues,this study begins with the characteristics of a DRU-based HVDC system and presents a control scheme for DRU-based GFM converters for power synchronization.Subsequently,the dq-frame impedance model of the DRU-based GFM converteris proposed for the stability analysis of the entire HVDC system.Finally,a simulation platform is built to verify the model accuracy and system stability.展开更多
A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously...A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously. Compared with the conventional AVA inversion based on generalized linear technique, this method does not depend on the initial model and can reach the global minimum. In order to increase the stability of the inversion, low-frequency trends of P-wave and S-wave impedances are built into the inversion. This method has been successfully applied to synthetic and field data. The estimated P-wave and S-wave impedances can be combined to derive other elastic parameters, which are sensitive for lithology identification and fluid prediction.展开更多
Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing num...Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy.展开更多
At present,the direct drive permanent magnet synchronous generator(DD-PMSG)grid connected system based on virtual synchronous generator(VSG)control will experience power oscillation at sub synchronous frequencies.The ...At present,the direct drive permanent magnet synchronous generator(DD-PMSG)grid connected system based on virtual synchronous generator(VSG)control will experience power oscillation at sub synchronous frequencies.The mechanism and characteristics of this new type of sub-synchronous interaction(SSI)are not yet clear,and the system cannot recover to steady state solely based on the characteristics of VSG itself.Especially when connected to a weak current network,oscillations are more pronounced,affecting the stability of the system.In severe cases,the systemmay trigger shutdown protection and be disconnected from the network.Existing research has only analyzed the oscillation mechanism under this phenomenon and has not proposed corresponding control strategies.This article proposes aVSM control strategy based on the VSG control algorithm,which balances the dq axis component of voltage and current,and improves the voltage and current loop of VSG control to reduce the impact of sub-synchronous oscillation(SSO)on the power grid.In MATLAB/Simulink,a simulation model of the proposed control strategy was built to verify its correctness and effectiveness.展开更多
In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical...In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.展开更多
A study of mode coupling phenomenon of coaxial resonators has been conducted with theories. Through establishing the source-free transmission line equation, boundary conditions of the coaxial resonators with a corruga...A study of mode coupling phenomenon of coaxial resonators has been conducted with theories. Through establishing the source-free transmission line equation, boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed. In the end, calculations are performed in a wide range of corrugation parameters for the resonator of the Karlsruhe Institute of Technology (KIT) relevant coaxial gyrotron.展开更多
To achieve the efficient application of impedance analysis in the stability assessment and enhancement of multiterminal DC distribution systems, this paper proposes the DCside reduced-order impedance models with power...To achieve the efficient application of impedance analysis in the stability assessment and enhancement of multiterminal DC distribution systems, this paper proposes the DCside reduced-order impedance models with power control and AC voltage control, respectively, by taking the load converter station as the object. By using the DC-side current as the feedforward state, the active compensator applied to the load converter station with two control modes is also derived as well as the corresponding reduced-order impedance models. Combined with the reduced-order impedance models, a method based on damping factor sensitivity is further proposed to design the parameters of the derived active compensators. The verification results in the frequency domain and time domain demonstrate the accuracy of the reduced-order impedance and the effectiveness of the proposed compensator parameter design method.展开更多
This is the second part of a two-part paper on stability study of data center power systems by impedance-based methods.As the basis for this application,Part I[1]developed new impedance models for power supplies that ...This is the second part of a two-part paper on stability study of data center power systems by impedance-based methods.As the basis for this application,Part I[1]developed new impedance models for power supplies that are the most dominant loads in data centers.This second part presents system modeling and analysis methods that can support practical data center power system design to ensure stability.The proposed methods comprise:1)building distribution network modeling by impedance scaling;2)system modeling and model reduction based on equivalent source impedance;3)system stability analysis in the sequence domain to include zero-sequence dynamics;and 4)expansion of system models and analyses to account for network asymmetry and uneven loading.These methods are used to characterize practical resonance problems observed in data centers,explain their root causes,and develop solutions.For systems using Y-connected power supply units(PSUs),the zero sequence is identified as the weakest link and the first to become unstable.The expanded system model and analysis reveal a new,differential-mode instability that is responsible for high frequency resonances.To guarantee system stability,new impedance-based product and system design specifications are developed based on sufficient conditions derived from the Nyquist stability criterion.Laboratory and field measurements are presented to substantiate the proposed methods and conclusions.展开更多
This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The ...This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The second step is to develop a robust adaptive impedance control mechanism.A novel Non-singular Terminal Sliding Mode Control combined with an adaptive super-twisting controller is being developed to achieve this goal.This combination's purpose is to provide high reliability,continuous performance tracking of the system's trajectories.The proposed adaptive control strategy reduces matched dynamic uncertainty while also lowering chattering,which is the sliding mode's most glaring issue.The proposed TPH is coupled with adaptive impedance control with the use of a Radial Basis Function Neural Network,which allows a robotic exoskeleton to simply track the desired impedance model.To validate the approach in real-time,an exoskeleton robot was deployed in controlled experimental circumstances.A comparison study has been set up to show how the adaptive impedance approach proposed is better than other traditional controllers.展开更多
At present,the power density of power electronic devices in data centers and electric vehicles is constantly increasing,and numerous electronic components are concentrated in a tight,high-temperature environment,which...At present,the power density of power electronic devices in data centers and electric vehicles is constantly increasing,and numerous electronic components are concentrated in a tight,high-temperature environment,which aggravates the performance degradation of electronic components.Consequently,X and Y capacitors,common-mode inductors,and differential-mode inductors used for electromagnetic interference(EMI)suppression suffer from aging effects,and their performance continues to decline.However,the electromagnetic compatibility test is often conducted immediately after the power electronic equipment leaves the factory.The electromagnetic compatibility of power electronic equipment is affected by aging,which is not assessed in current industrial testing.This study conducts aging experiments on passive electronic components in EMI filters and measures the impedance in the frequency range from 150 kHz to 30 MHz.Subsequently,a multi-element aging model based on electromagnetic field analysis is established.The proposed model is suitable for electromagnetic compatibility analysis considering aging.Finally,the aging performance of a commercial two-stage EMI filter is predicted to verify the model proposed in the study.The proposed model explains the degeneration of the EMI filter with aging in the frequency range of 150 kHz to 1 MHz,with a maximum amplitude error of 0.58 dB and phase error of 1.0°.展开更多
基金National Natural Science Foundation of China(52307127)State Key Laboratory of Power System Operation and Control(SKLD23KZ07)。
文摘To facilitate rapid analysis of the oscillation stability mechanism in modular multilevel converter-based high voltage direct current(MMC-HVDC)systems and streamline the simulation process for determining MMC impedance characteristics,a simplified mathematical simulation model for MMC closed-loop impedance is developed using the harmonic state space method.This model considers various control strategies and includes both AC-side and DC-side impedance models.By applying a Nyquist criterion-based impedance analysis method,the stability mechanisms on the AC and DC sides of the MMC are examined.In addition,a data-driven oscillation stability analysis method is also proposed,leveraging a global sensitivity algorithm based on fast model results to identify key parameters influencing MMC oscillation stability.Based on sensitivity analysis results,a parameter adjustment strategy for oscillation suppression is proposed.The simulation results from the MATLAB/Simulinkbased MMC model validate the effectiveness of the proposed method.
基金support of National Natural Science Foundation of China(No.52177144)。
文摘High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed.
基金supported by Research on the Oscillation Mechanism and Suppression Strategy of Yu-E MMC-HVDC Equipment and System(2021Yudian Technology 33#).
文摘Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability.
基金supported by State Grid Corporation of China Science and Technology Project Funding(No.5100-202399360A-2-2-ZB)。
文摘Oscillation accidents emerge in power systems inte grated with increasing penetration of renewable energy sources.The impedance of electromagnetic dynamics is investigated in recent years,where the mechanical dynamics are neglected.So far,the low-frequency oscillations are not well addressed with the impedance analysis method.A novel analytical impedance is formulated and implemented for wind energy conversion sys tem consisting of wind turbine generators(WTGs)and wind farm,which fills the gap in the mechanical dynamics of the im pedance.Instead of assuming constant values,the electrome chanical dynamics of the rotor speed and the pitch angle are in volved in the WTG impedance.Besides,the impedance frame work is generally and modularly designed and is adaptive to different operating regions.With the developed analytical im pedance,the stability assessment can cover the low-frequency oscillations,providing an in-depth insight into the mechanical parameters influencing the small-signal stability performance.As an application,the impedance characteristic and stability performance of systems with active power reserve for grid sup porting are analyzed and optimized.Furthermore,the shafting torsional vibrations of WTGs in wind farms are analyzed with modal decomposition and the low-frequency impedance model.The improved accuracy of the developed analytical impedance is illustrated by comparison with commonly used impedance,which ignores the coupling between the electrical and mechani cal dynamics.It is proven that the mechanical dynamics have a significant influence on the impedance,particularly in the lowfrequency range.Experimental validation is carried out to vali date the low-frequency impedance model and the stability per formance.
基金supported by National Natural Science Foundation of China(No.52277102)。
文摘In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.
文摘In line commutated converter based high-voltage direct current(LCC-HVDC)transmission systems,the transformer saturation can induce harmonic instability,which poses a serious threat to the safe operation of the power system.However,the nonlinear characteristics of the power grids introduced by the transformer saturation considerably limit the application of the conventional analysis methods.To address the issue,this paper derives a linear model for the transformer saturation caused by the DC current due to the converter modulation.Afterwards,the nonlinear characteristics of power grids with the transformer saturation is described by a complex valued impedance matrix.Based on the derived impedance matrix,the system harmonic stability is analyzed and the mechanism of the transformer saturation induced harmonic instability is revealed.Finally,the sensitivity analysis is conducted to find the key factors that influence the system core saturation instability.The proposed impedance model is verified by the electromagnetic transient simulation,and the simulation results corroborate the effectiveness of the proposed impedance model.Index TermsLine commutated converter based high voltage direct current(LCC-HVDC),transformer saturation,harmonic instability,impedance model.
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
文摘This two-part paper presents methods to predict,characterize and ensure the stability of data center power systems based on impedance analysis.The work was motivated by recent power system resonance incidents in new data centers.Part I presents new input impedance models for single-phase power supply units(PSUs)to enable this application.Existing impedance models of single-phase PSU cannot meet the requirements of this application because they exclude DC voltage control that affects system stability at low frequency,or are in a dq reference frame that cannot handle the complexity of data center power systems.The developed new models include DC bus dynamics and are directly in the phase domain to simplify system stability analysis,avoiding the need for multiple-input-multiple-output(MIMO)system models and the generalized Nyquist criterion that are difficult to apply but necessary with dq-frame models.Both the converter and system level models also include the coupled current response that is characteristic of AC-DC converters and important for system stability at low frequency.The simple form of the models and system stability analysis directly in the phase domain also make it possible to develop new PSU design methods and performance specifications that together will ensure the stability of new data center power systems.The developed models are validated by laboratory measurements and are used in Part II of the work to study data center power system stability.
文摘This paper proposed a T- Y tube model to simulate foe input impedance of arterial system. It improves and extends the asymmetric T-tube model which was firstproposed by O' Rourke[1] and developed laier by Liu et al.[2]. Based on foe asymmetricT-tube model. a T-Y tube model was proposed by adding branching tubes whichrepresem the iliac arteries.All the tubes are considered to be uniform,viscoelasticlongitudinally tethered cylindrical tubes.The upper tube terminates with a windkesselmodel, while the terminal arterioles of the lowr tube are expressed as a resistance.After proper eraluation of the parameters.the impedance of the arterial system iscalculated under normal physiological and hypertensive condition.The model canpredict impedance in good agreement with the experimentally obtained data no matterin normal physiological condition or in pathological condition In comparison with theasymmeric T-tube model,T- Y tube model is closer to anatomy structure of the human arlerial system and at the sametime much simpler than the extremely complex multiplebranching tube model Therefore it will be a valuable model in studying the influencesof various parameters on aorta impedance and ventricular-vascular coupling.
基金the financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.
基金Supported by State Key Laboratory of HVDC(SKLHVDC-2023-KF-09).
文摘Diode rectifier unit(DRU)-based high-voltage direct current(HVDC)transmissionsystems areeffectivein achieving the stableandeconomical operation of offshore wind-powergeneration.Considering theuncontrollable characteristicsof DRUs,a grid-forming(GFM)strategy forwind-turbine converters isnecessary to support offshore AC voltageand frequency.However,the active power-synchronization control in traditional GFM converters is unsuitable for DRU-based GFM converters.Thus,the stability issue for DRU-based HVDC systems involving DRU-based GFM and grid-following(GFL)converters has not yet been addressed.To solve these issues,this study begins with the characteristics of a DRU-based HVDC system and presents a control scheme for DRU-based GFM converters for power synchronization.Subsequently,the dq-frame impedance model of the DRU-based GFM converteris proposed for the stability analysis of the entire HVDC system.Finally,a simulation platform is built to verify the model accuracy and system stability.
基金supported by the National Natural Science Foundation of China(Nos.41004096 and 41230318)
文摘A new prestack AVA simultaneous inversion using particle swarm optimization algorithm is proposed, which can obtain the elastic parameters such as P-wave and S-wave impedance from P-wave reflection data simultaneously. Compared with the conventional AVA inversion based on generalized linear technique, this method does not depend on the initial model and can reach the global minimum. In order to increase the stability of the inversion, low-frequency trends of P-wave and S-wave impedances are built into the inversion. This method has been successfully applied to synthetic and field data. The estimated P-wave and S-wave impedances can be combined to derive other elastic parameters, which are sensitive for lithology identification and fluid prediction.
基金supported by Ministry of Science&Technology under National Key R&D Program of China(No.2021YFE0108600)Ningbo Science and Technology Bureau under S&T Innovation 2025 Major Special Program(No.2019B10071)Key International Cooperation of National Natural Science Foundation of China(No.51920105011)。
文摘Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy.
文摘At present,the direct drive permanent magnet synchronous generator(DD-PMSG)grid connected system based on virtual synchronous generator(VSG)control will experience power oscillation at sub synchronous frequencies.The mechanism and characteristics of this new type of sub-synchronous interaction(SSI)are not yet clear,and the system cannot recover to steady state solely based on the characteristics of VSG itself.Especially when connected to a weak current network,oscillations are more pronounced,affecting the stability of the system.In severe cases,the systemmay trigger shutdown protection and be disconnected from the network.Existing research has only analyzed the oscillation mechanism under this phenomenon and has not proposed corresponding control strategies.This article proposes aVSM control strategy based on the VSG control algorithm,which balances the dq axis component of voltage and current,and improves the voltage and current loop of VSG control to reduce the impact of sub-synchronous oscillation(SSO)on the power grid.In MATLAB/Simulink,a simulation model of the proposed control strategy was built to verify its correctness and effectiveness.
基金supported by National Key Research and Development Program of China(2018YFB0904100)Science and Technology Project of SGCC(SGHB0000KXJS1800685).
文摘In DC distributed power systems(DPSs),the complex impedance interactions possibly lead to DC bus voltage oscillation or collapse.In previous research,the stability analysis of DPSs is implemented based on mathematical analysis in control theory.The specific mechanisms of the instability of the cascade system have not been intuitively clarified.In this paper,the stability analysis of DPSs based on the traditional Nyquist criterion is simplified to the resonance analysis of the seriesconnected port impedance(Z=R+jX)of source and load converters.It reveals that the essential reason for impedance instability of a DC cascade system is that the negative damping characteristic(R<0)of the port the overall impedance amplifies the internal resonance source at reactance zero-crossing frequency.The simplified stability criterion for DC cascade systems can be concluded as:in the negative damping frequency ranges(R<0),there exists no zero-crossing point of the reactance component(i.e.,X=0).According to the proposed stability criterion,the oscillation modes of cascade systems are classified.A typical one is the internal impedance instability excited by the negative damping,and the other one is that the external disturbance amplified by negativity in a low stability margin.Thus,the impedance reshaping method for stability improvement of the system can be further specified.The validity of the simplified criterion is verified theoretically and experimentally by a positive damping reshaping method.
基金supported by the National High Technology Research and Development Program under Grant No.803-410-7
文摘A study of mode coupling phenomenon of coaxial resonators has been conducted with theories. Through establishing the source-free transmission line equation, boundary conditions of the coaxial resonators with a corrugated inner conductor are analyzed. In the end, calculations are performed in a wide range of corrugation parameters for the resonator of the Karlsruhe Institute of Technology (KIT) relevant coaxial gyrotron.
基金supported in part by the National Natural Science Foundation of China (No. 52007080)the China Postdoctoral Science Foundation (No.2020TQ0142)the Opening Foundation of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No.LAPS21008)。
文摘To achieve the efficient application of impedance analysis in the stability assessment and enhancement of multiterminal DC distribution systems, this paper proposes the DCside reduced-order impedance models with power control and AC voltage control, respectively, by taking the load converter station as the object. By using the DC-side current as the feedforward state, the active compensator applied to the load converter station with two control modes is also derived as well as the corresponding reduced-order impedance models. Combined with the reduced-order impedance models, a method based on damping factor sensitivity is further proposed to design the parameters of the derived active compensators. The verification results in the frequency domain and time domain demonstrate the accuracy of the reduced-order impedance and the effectiveness of the proposed compensator parameter design method.
文摘This is the second part of a two-part paper on stability study of data center power systems by impedance-based methods.As the basis for this application,Part I[1]developed new impedance models for power supplies that are the most dominant loads in data centers.This second part presents system modeling and analysis methods that can support practical data center power system design to ensure stability.The proposed methods comprise:1)building distribution network modeling by impedance scaling;2)system modeling and model reduction based on equivalent source impedance;3)system stability analysis in the sequence domain to include zero-sequence dynamics;and 4)expansion of system models and analyses to account for network asymmetry and uneven loading.These methods are used to characterize practical resonance problems observed in data centers,explain their root causes,and develop solutions.For systems using Y-connected power supply units(PSUs),the zero sequence is identified as the weakest link and the first to become unstable.The expanded system model and analysis reveal a new,differential-mode instability that is responsible for high frequency resonances.To guarantee system stability,new impedance-based product and system design specifications are developed based on sufficient conditions derived from the Nyquist stability criterion.Laboratory and field measurements are presented to substantiate the proposed methods and conclusions.
文摘This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities.The first step is to estimate the human's target position(also known as TPH).The second step is to develop a robust adaptive impedance control mechanism.A novel Non-singular Terminal Sliding Mode Control combined with an adaptive super-twisting controller is being developed to achieve this goal.This combination's purpose is to provide high reliability,continuous performance tracking of the system's trajectories.The proposed adaptive control strategy reduces matched dynamic uncertainty while also lowering chattering,which is the sliding mode's most glaring issue.The proposed TPH is coupled with adaptive impedance control with the use of a Radial Basis Function Neural Network,which allows a robotic exoskeleton to simply track the desired impedance model.To validate the approach in real-time,an exoskeleton robot was deployed in controlled experimental circumstances.A comparison study has been set up to show how the adaptive impedance approach proposed is better than other traditional controllers.
基金Supported in part by the Royal Academy of Engineering:Transforming Systems through Partnership(China)under Grant TSPC1017in part by the Excellent Youth Scholars of the National Natural Science Foundation of China under Grant 51822701in part by the Key Project of the National Natural Science Foundation of China under Grant U1866211.
文摘At present,the power density of power electronic devices in data centers and electric vehicles is constantly increasing,and numerous electronic components are concentrated in a tight,high-temperature environment,which aggravates the performance degradation of electronic components.Consequently,X and Y capacitors,common-mode inductors,and differential-mode inductors used for electromagnetic interference(EMI)suppression suffer from aging effects,and their performance continues to decline.However,the electromagnetic compatibility test is often conducted immediately after the power electronic equipment leaves the factory.The electromagnetic compatibility of power electronic equipment is affected by aging,which is not assessed in current industrial testing.This study conducts aging experiments on passive electronic components in EMI filters and measures the impedance in the frequency range from 150 kHz to 30 MHz.Subsequently,a multi-element aging model based on electromagnetic field analysis is established.The proposed model is suitable for electromagnetic compatibility analysis considering aging.Finally,the aging performance of a commercial two-stage EMI filter is predicted to verify the model proposed in the study.The proposed model explains the degeneration of the EMI filter with aging in the frequency range of 150 kHz to 1 MHz,with a maximum amplitude error of 0.58 dB and phase error of 1.0°.