Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approa...Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.展开更多
To address the lack of voltage ratio standards for accuracy testing of low-frequency voltage transformers,it is necessary to develop a 3 kV low-frequency induction voltage divider.Firstly,based on the analysis of the ...To address the lack of voltage ratio standards for accuracy testing of low-frequency voltage transformers,it is necessary to develop a 3 kV low-frequency induction voltage divider.Firstly,based on the analysis of the error sources of the induction voltage divider,a method was proposed to calculate the excitation impedance of the induction voltage divider using complex magnetic permeability.A measurement circuit based on the lock-in principle was set up to measure the complex magnetic permeability of grained-oriented silicon steel 30P100 and permalloy 1J85 at different frequencies.Secondly,a 3 kV low-frequency induction voltage divider with a two-stage excitation and a series-wound ra-tio winding in 10 sections was designed.The errors of the two stages of the instrument transformers were calculated at 20 and 50 Hz,respectively.Finally,the divider's errors were calibrated at 20 and 50 Hz using the reference potential method.The results showed that,compared to 50 Hz,the excitation impedance of the two stages decreased and the errors increased at 20 Hz,with the overall error of the induction voltage divider being better at 50 Hz than at 20 Hz.Experimental measurements indicated that at 20 Hz,the ratio error and phase error of the 3 kV two-stage excitation induction voltage divider were better than 110-5,whereas at 50 Hz,the errors were better than 110-6.This study provides support for the accuracy testing of voltage transformers used in low-frequency flexible AC transmission projects.展开更多
Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity shou...Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity should be kept below an accepted level to avoid beam instability. These modes can be damped by adding waveguide on beam pipe. Detailed simulation of Q in CST Microwave Studio is introduced and experiment results on an aluminum model cavity with damping waveguide are reported to make a comparison.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62201352)。
文摘Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.
基金The Innovation Fund Project of China Electric Power Research Institute:Research on accuracy test method of voltage transformer for low-frequency transmission and development of test system,Grant/Award Number:GY83-22-005。
文摘To address the lack of voltage ratio standards for accuracy testing of low-frequency voltage transformers,it is necessary to develop a 3 kV low-frequency induction voltage divider.Firstly,based on the analysis of the error sources of the induction voltage divider,a method was proposed to calculate the excitation impedance of the induction voltage divider using complex magnetic permeability.A measurement circuit based on the lock-in principle was set up to measure the complex magnetic permeability of grained-oriented silicon steel 30P100 and permalloy 1J85 at different frequencies.Secondly,a 3 kV low-frequency induction voltage divider with a two-stage excitation and a series-wound ra-tio winding in 10 sections was designed.The errors of the two stages of the instrument transformers were calculated at 20 and 50 Hz,respectively.Finally,the divider's errors were calibrated at 20 and 50 Hz using the reference potential method.The results showed that,compared to 50 Hz,the excitation impedance of the two stages decreased and the errors increased at 20 Hz,with the overall error of the induction voltage divider being better at 50 Hz than at 20 Hz.Experimental measurements indicated that at 20 Hz,the ratio error and phase error of the 3 kV two-stage excitation induction voltage divider were better than 110-5,whereas at 50 Hz,the errors were better than 110-6.This study provides support for the accuracy testing of voltage transformers used in low-frequency flexible AC transmission projects.
文摘Superconducting deflecting cavities can be used in synchrotron light source to generate subpicosecond X-ray pulses while the impedance of the lower order modes (LOM) and higher order modes (HOM) in the cavity should be kept below an accepted level to avoid beam instability. These modes can be damped by adding waveguide on beam pipe. Detailed simulation of Q in CST Microwave Studio is introduced and experiment results on an aluminum model cavity with damping waveguide are reported to make a comparison.