Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantati...Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantation process including preoperative evaluation,donation,organ and patient transportation,surgery,postoperative recovery,and follow-up.This is a topic that has not been fully addressed yet,but its importance is being increasingly appreciated in surgery.The aim of this study was to investigate the carbon footprint associated with transplantation and propose sustainable mitigating solutions.A comprehensive review of the existing literature on transplantation was conducted and supplemented with findings from the broader fields of surgical and perioperative care,given the scarcity of available data.The analysis identified the most involved environmental factors and attempted to offer practical solutions based on current sustainability practices.Notably,no study has yet examined the carbon footprint associated with the entire transplantation procedure.Only five studies have attempted to assess the environmental impact of kidney or liver transplants,but they focused,almost explicitly,on specific steps of the process.By employing an extrapolative methodology from the broader surgical field,we determined that the primary contributors to the environmental impact of transplantation are energy,consumables and materials,anesthesia and pharmaceuticals,transportation,and water.This review offers practical solutions utilizing the 5R framework,emphasizing sustainability to ensure transplantation remains clinically and environmentally relevant.展开更多
Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse s...Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.展开更多
Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as ...Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and compreh...In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and comprehensive understanding of the failure mechanisms of electronic detonators subjected to impact loading is of great significance to the reliability design and field safety use of electronic detonators.The spatial distribution characteristics and failure modes of misfired electronic detonators under different application scenarios are statistically analysed.The results show that under high impact loads,electronic detonators will experience failure phenomena such as rupture of the fuse head,fracture of the bridge wire,falling off of the solder joint,chip module damage and insufficient initiation energy after deformation.The lack of impact resistance is the primary cause of misfire of electronic detonators.Combined with the underwater impact resistance test and the impact load test in the adjacent blasthole on site,the formulas of the impact failure probability of the electronic detonator under different stress‒strength distribution curves are deduced.The test and evaluation method of the impact resistance of electronic detonators based on stress‒strength interference theory is proposed.Furthermore,the impact failure model of electronic detonators considering the strength degradation effect under repeated random loads is established.On this basis,the failure mechanism of electronic detonators under different application environments,such as open-pit blasting and underground blasting,is revealed,which provides scientific theory and methods for the reliability analysis,design and type selection of electronic detonators in rock drilling and blasting.展开更多
[Objective]As hydrogen energy has gained new momentum recently,analyzing the economic and social impacts of developing a hydrogen energy sector can inform further policy formation and investment decision making in thi...[Objective]As hydrogen energy has gained new momentum recently,analyzing the economic and social impacts of developing a hydrogen energy sector can inform further policy formation and investment decision making in this regard.[Method]Considering the increasingly important role of East Asia Summit(EAS)region in both economic growth and green energy transition,this paper developed a demand-driven model for the hydrogen energy supply chains to comprehensively and quantitatively evaluate the economic and social impacts hydrogen energy development in the EAS region.[Result]This model provides estimates of the capital investment required,the number of new jobs created,the potential carbon emissions reduction,the subsidies needed in the early stages of development,and the impacts on key energy security indicators.[Conclusion]This study find that hydrogen energy development has a significant job creation effect,and that the total investment and the fiscal burden appear to be manageable for countries in the EAS region.In addition to substantial carbon emissions reduction,positive social impacts also include general improvements in energy security indicators.展开更多
Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warf...Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warfare.This study presents a systematic review and analysis of current research on cooperative guidance.First,a bibliometric analysis is conducted on 513 articles using the Scopus database and CiteSpace software to assess keyword clustering,keyword cooccurrence,and keyword burst,and to later visualize the results.Second,fundamental theories of cooperative guidance,including relative motion modeling methods,algebraic graph theory,and multi-agent consensus theory,are summarized.Subsequently,an overview of current cooperative laws and corresponding analysis methods is provided,with categorization based on the cooperative structure and convergence performance.Finally,we summarize current research developments based on five perspectives and propose a developmental framework based on five layers(cyber,physical,decision,information,and system),discussing potential future advancements in cooperative terminal guidance.This framework emphasizes five key areas of research:networked,heterogeneous,integrated,intelligent,and group cooperations,with the goal of offering trends and insights for futurework.展开更多
Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)...Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)score,and SCImago Journal Rank(SJR)-and the journal ratings assigned by expert reviewers.We expect that the OA journals will have especially high citation impact relative to their perceived quality(reputation).Design/methodology/approach:Regression is used to estimate the ratings assigned by expert reviewers for the 2021 CABS(Chartered Association of Business Schools)journal assessment exercise.The independent variables are the four citation metrics,evaluated separately,and a dummy variable representing the OA/non-OA status of each journal.Findings:Regardless of the citation metric used,OA journals in business and economics have especially high citation impact relative to their perceived quality(reputation).That is,they have especially low perceived quality(reputation)relative to their citation impact.Research limitations:These results are specific to the CABS journal ratings and the four citation metrics.However,there is strong evidence that CABS is closely related to several other expert ratings,and that 5IF,CiteScore,AI,and SJR are representative of the other citation metrics that might have been chosen.Practical implications:There are at least two possible explanations for these results:(1)expert evaluators are biased against OA journals,and(2)OA journals have especially high citation impact due to their increased accessibility.Although this study does not allow us to determine which of these explanations are supported,the results suggest that authors should consider publishing in OA journals whenever overall readership and citation impact are more important than journal reputation within a particular field.Moreover,the OA coefficients provide a useful indicator of the extent to which anti-OA bias(or the citation advantage of OA journals)is diminishing over time.Originality/value:This is apparently the first study to investigate the impact of OA status on the relationships between expert journal ratings and journal citation metrics.展开更多
Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security...Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.展开更多
Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical sign...Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.展开更多
As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their ...As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.展开更多
The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains lar...The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.展开更多
Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strai...Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.展开更多
The mechanism of strength and toughness variation in Ti microalloyed steel within the range of 0.04–0.157 wt.%was investigated.By adding 0.13 wt.%Ti,the steel achieves higher strength while maintaining a certain leve...The mechanism of strength and toughness variation in Ti microalloyed steel within the range of 0.04–0.157 wt.%was investigated.By adding 0.13 wt.%Ti,the steel achieves higher strength while maintaining a certain level of elongation and low-temperature impact toughness.With increasing Ti content,the grain size in the steel decreased from 17.7 to 8.9μm.This decrease in grain size is accompanied by an increase in the percentage of low-angle grain boundaries and dislocations,which act as barriers to hinder crack propagation.The Ti microalloyed steel exhibits a 20%increase in yield strength and a 14%increase in tensile strength.The transformation of steel plasticity occurs when the Ti content exceeds 0.102 wt.%.The low-temperature impact toughness of the steel gradually decreases with increasing Ti content.At low Ti content,the low-temperature impact toughness is reduced due to crack initiation by large-size inclusions.At high Ti content,the low-temperature impact toughness of the steel deteriorates due to several factors.These include the narrower tough–brittle transition zone,grain boundary embrittlement caused by small-sized grains,and the decrease in the solid solution strengthening effect.展开更多
Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid met...The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.展开更多
文摘Green transplant refers to the realization of the importance of understanding and improving the environmental footprint of transplantation through sustainable practices.This involves assessing the entire transplantation process including preoperative evaluation,donation,organ and patient transportation,surgery,postoperative recovery,and follow-up.This is a topic that has not been fully addressed yet,but its importance is being increasingly appreciated in surgery.The aim of this study was to investigate the carbon footprint associated with transplantation and propose sustainable mitigating solutions.A comprehensive review of the existing literature on transplantation was conducted and supplemented with findings from the broader fields of surgical and perioperative care,given the scarcity of available data.The analysis identified the most involved environmental factors and attempted to offer practical solutions based on current sustainability practices.Notably,no study has yet examined the carbon footprint associated with the entire transplantation procedure.Only five studies have attempted to assess the environmental impact of kidney or liver transplants,but they focused,almost explicitly,on specific steps of the process.By employing an extrapolative methodology from the broader surgical field,we determined that the primary contributors to the environmental impact of transplantation are energy,consumables and materials,anesthesia and pharmaceuticals,transportation,and water.This review offers practical solutions utilizing the 5R framework,emphasizing sustainability to ensure transplantation remains clinically and environmentally relevant.
基金Funded by the National Natural Science Foundation of China(Nos.52278518 and 51938011)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJB560021)。
文摘Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2682024GF019)。
文摘Excellent detonation performances and low sensitivity are prerequisites for the deployment of energetic materials.Exploring the underlying factors that affect impact sensitivity and detonation performances as well as exploring how to obtain materials with desired properties remains a long-term challenge.Machine learning with its ability to solve complex tasks and perform robust data processing can reveal the relationship between performance and descriptive indicators,potentially accelerating the development process of energetic materials.In this background,impact sensitivity,detonation performances,and 28 physicochemical parameters for 222 energetic materials from density functional theory calculations and published literature were sorted out.Four machine learning algorithms were employed to predict various properties of energetic materials,including impact sensitivity,detonation velocity,detonation pressure,and Gurney energy.Analysis of Pearson coefficients and feature importance showed that the heat of explosion,oxygen balance,decomposition products,and HOMO energy levels have a strong correlation with the impact sensitivity of energetic materials.Oxygen balance,decomposition products,and density have a strong correlation with detonation performances.Utilizing impact sensitivity of 2,3,4-trinitrotoluene and the detonation performances of 2,4,6-trinitrobenzene-1,3,5-triamine as the benchmark,the analysis of feature importance rankings and statistical data revealed the optimal range of key features balancing impact sensitivity and detonation performances:oxygen balance values should be between-40%and-30%,density should range from 1.66 to 1.72 g/cm^(3),HOMO energy levels should be between-6.34 and-6.31 eV,and lipophilicity should be between-1.0 and 0.1,4.49 and 5.59.These findings not only offer important insights into the impact sensitivity and detonation performances of energetic materials,but also provide a theoretical guidance paradigm for the design and development of new energetic materials with optimal detonation performances and reduced sensitivity.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金supported by the Chongqing Youth Talent Support Program(Cstc2022ycjh-bgzxm0079)the Chinese National Natural Science Foundation(52379128,51979152)+2 种基金Science Fund for Distinguished Young Scholars of Hubei Proivnce(2023AFA048)Educational Commission of Hubei Province of China(T2020005)the Young Top-notch Talent Cultivation Program of Hubei Province.
文摘In rock drilling and blasting,the misfire of electronic detonators will not only affect the rock fragmentation result but also bring serious potential safety hazards to engineering construction.An accurate and comprehensive understanding of the failure mechanisms of electronic detonators subjected to impact loading is of great significance to the reliability design and field safety use of electronic detonators.The spatial distribution characteristics and failure modes of misfired electronic detonators under different application scenarios are statistically analysed.The results show that under high impact loads,electronic detonators will experience failure phenomena such as rupture of the fuse head,fracture of the bridge wire,falling off of the solder joint,chip module damage and insufficient initiation energy after deformation.The lack of impact resistance is the primary cause of misfire of electronic detonators.Combined with the underwater impact resistance test and the impact load test in the adjacent blasthole on site,the formulas of the impact failure probability of the electronic detonator under different stress‒strength distribution curves are deduced.The test and evaluation method of the impact resistance of electronic detonators based on stress‒strength interference theory is proposed.Furthermore,the impact failure model of electronic detonators considering the strength degradation effect under repeated random loads is established.On this basis,the failure mechanism of electronic detonators under different application environments,such as open-pit blasting and underground blasting,is revealed,which provides scientific theory and methods for the reliability analysis,design and type selection of electronic detonators in rock drilling and blasting.
文摘[Objective]As hydrogen energy has gained new momentum recently,analyzing the economic and social impacts of developing a hydrogen energy sector can inform further policy formation and investment decision making in this regard.[Method]Considering the increasingly important role of East Asia Summit(EAS)region in both economic growth and green energy transition,this paper developed a demand-driven model for the hydrogen energy supply chains to comprehensively and quantitatively evaluate the economic and social impacts hydrogen energy development in the EAS region.[Result]This model provides estimates of the capital investment required,the number of new jobs created,the potential carbon emissions reduction,the subsidies needed in the early stages of development,and the impacts on key energy security indicators.[Conclusion]This study find that hydrogen energy development has a significant job creation effect,and that the total investment and the fiscal burden appear to be manageable for countries in the EAS region.In addition to substantial carbon emissions reduction,positive social impacts also include general improvements in energy security indicators.
基金supported by the National Natural Science Foundation of China(No.62173274)the National Key R&D Program of China(No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ10045 and 2025JJ60072)the Open Research Subject of State Key Laboratory of Intelligent Game(No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(No.2024M754304)the Aeronautical Science Foundation of China(No.2023Z005030001).
文摘Cooperative guidance is a method for achieving combat objectives through information sharing and cooperative effects,and has emerged as a significant research area in the fields of missile guidance and systematic warfare.This study presents a systematic review and analysis of current research on cooperative guidance.First,a bibliometric analysis is conducted on 513 articles using the Scopus database and CiteSpace software to assess keyword clustering,keyword cooccurrence,and keyword burst,and to later visualize the results.Second,fundamental theories of cooperative guidance,including relative motion modeling methods,algebraic graph theory,and multi-agent consensus theory,are summarized.Subsequently,an overview of current cooperative laws and corresponding analysis methods is provided,with categorization based on the cooperative structure and convergence performance.Finally,we summarize current research developments based on five perspectives and propose a developmental framework based on five layers(cyber,physical,decision,information,and system),discussing potential future advancements in cooperative terminal guidance.This framework emphasizes five key areas of research:networked,heterogeneous,integrated,intelligent,and group cooperations,with the goal of offering trends and insights for futurework.
文摘Purpose:For a set of 1,561 Open Access(OA)and non-OA journals in business and economics,this study evaluates the relationships between four citation metrics-five-year Impact Factor(5IF),CiteScore,Article Influence(AI)score,and SCImago Journal Rank(SJR)-and the journal ratings assigned by expert reviewers.We expect that the OA journals will have especially high citation impact relative to their perceived quality(reputation).Design/methodology/approach:Regression is used to estimate the ratings assigned by expert reviewers for the 2021 CABS(Chartered Association of Business Schools)journal assessment exercise.The independent variables are the four citation metrics,evaluated separately,and a dummy variable representing the OA/non-OA status of each journal.Findings:Regardless of the citation metric used,OA journals in business and economics have especially high citation impact relative to their perceived quality(reputation).That is,they have especially low perceived quality(reputation)relative to their citation impact.Research limitations:These results are specific to the CABS journal ratings and the four citation metrics.However,there is strong evidence that CABS is closely related to several other expert ratings,and that 5IF,CiteScore,AI,and SJR are representative of the other citation metrics that might have been chosen.Practical implications:There are at least two possible explanations for these results:(1)expert evaluators are biased against OA journals,and(2)OA journals have especially high citation impact due to their increased accessibility.Although this study does not allow us to determine which of these explanations are supported,the results suggest that authors should consider publishing in OA journals whenever overall readership and citation impact are more important than journal reputation within a particular field.Moreover,the OA coefficients provide a useful indicator of the extent to which anti-OA bias(or the citation advantage of OA journals)is diminishing over time.Originality/value:This is apparently the first study to investigate the impact of OA status on the relationships between expert journal ratings and journal citation metrics.
文摘Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42241103 and 62227901)the Key Research Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant Nos. IGGCAS-202101 and IGGCAS-202401)
文摘Lunar impact glasses have been identified as crucial indicators of geochemical information regarding their source regions. Impact glasses can be categorized as either local or exotic. Those preserving geochemical signatures matching local lithologies (e.g., mare basalts or their single minerals) or regolith bulk soil compositions are classified as “local”. Otherwise, they could be defined as “exotic”. The analysis of exotic glasses provides the opportunity to explore previously unsampled lunar areas. This study focuses on the identification of exotic glasses within the Chang’e-5 (CE-5) soil sample by analyzing the trace elements of 28 impact glasses with distinct major element compositions in comparison with the CE-5 bulk soil. However, the results indicate that 18 of the analyzed glasses exhibit trace element compositions comparable to those of the local CE-5 materials. In particular, some of them could match the local single mineral component in major and trace elements, suggesting a local origin. Therefore, it is recommended that the investigation be expanded from using major elements to including nonvolatile trace elements, with a view to enhancing our understanding on the provenance of lunar impact glasses. To achieve a more accurate identification of exotic glasses within the CE-5 soil sample, a novel classification plot of Mg# versus La is proposed. The remaining 10 glasses, which exhibit diverse trace element variations, were identified as exotic. A comparative analysis of their chemical characteristics with remote sensing data indicates that they may have originated from the Aristarchus, Mairan, Sharp, or Pythagoras craters. This study elucidates the classification and possible provenance of exotic materials within the CE-5 soil sample, thereby providing constraints for the enhanced identification of local and exotic components at the CE-5 landing site.
基金supported by the National Natural Science Foundation of China(Nos.U24A2088,42177130,42277174,and 42477166).
文摘As coal mining depth increases,the combined effects of high stress,mining stress,and fault structures make dynamic impact hazards more frequent.The reproduction of dynamic impact phenomena is basis for studying their occurrence patterns and control mechanisms.Physical simulation test represents an efficacious methodology.However,there is currently a lack of simulation devices that can effectively simulate two types of dynamic impact phenomena,including high stress and fault slip dynamic impact.To solve aforementioned issues,the physical simulation test system for dynamic impact in deep roadways developed by authors is employed to carry out comparative tests of high stress and fault slip dynamic impact.The phenomena of high stress and fault slip dynamic impact are reproduced successfully.A comparative analysis is conducted on dynamic phenomena,stress evolution,roadway deformation,and support force.The high stress dynamic impact roadway instability mode,which is characterized by the release of high energy accompanied by symmetric damage,and the fault slip dynamic impact roadway instability mode,which is characterized by the propagation of unilateral stress waves accompanied by asymmetric damage,are clarified.On the basis,the differentiated control concepts for different types of dynamic impact in deep roadways are proposed.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20242059)the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province(PCMGH-2023-02)the opening fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105827-FW202209)are gratefully acknowledged.
文摘The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.
基金National Natural Science Foundation of China (No. U20A20275)Natural Science Foundation of Hunan Province,China (No. 2021JJ40096)。
文摘Based on the investigation of mechanical response and microstructure evolution of a commercial 7003 aluminum alloy under high-speed impact,a new simple and effective method was proposed to determine the critical strain required for the nucleation of adiabatic shear band(ASB).The deformation results of cylindrical and hat-shaped samples show that the critical strain required for ASB nucleation corresponds to the strain at the first local minimum after peak stress on the first derivative curve of true stress−true strain.The method of determining the critical strain for the nucleation of ASB through the first derivative of the flow stress curve is named the first derivative method.The proposed first derivative method is not only applicable to the 7003 aluminum alloy,but also to other metal materials,such as commercial purity titanium,WY-100 steel,and AM80 magnesium alloy.This proves that it has strong universality.
基金supported by the National Natural Science Foundation of China(Nos.52174311 and 51974020).
文摘The mechanism of strength and toughness variation in Ti microalloyed steel within the range of 0.04–0.157 wt.%was investigated.By adding 0.13 wt.%Ti,the steel achieves higher strength while maintaining a certain level of elongation and low-temperature impact toughness.With increasing Ti content,the grain size in the steel decreased from 17.7 to 8.9μm.This decrease in grain size is accompanied by an increase in the percentage of low-angle grain boundaries and dislocations,which act as barriers to hinder crack propagation.The Ti microalloyed steel exhibits a 20%increase in yield strength and a 14%increase in tensile strength.The transformation of steel plasticity occurs when the Ti content exceeds 0.102 wt.%.The low-temperature impact toughness of the steel gradually decreases with increasing Ti content.At low Ti content,the low-temperature impact toughness is reduced due to crack initiation by large-size inclusions.At high Ti content,the low-temperature impact toughness of the steel deteriorates due to several factors.These include the narrower tough–brittle transition zone,grain boundary embrittlement caused by small-sized grains,and the decrease in the solid solution strengthening effect.
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
基金supported by the National Natural Science Foundation of China(Grant No.12211530061)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LD22A020001)。
文摘The diffusion and dynamic behaviors of liquid metal droplet during impact significantly affect its application in 3D printing and painting processes.To obtain a better understanding of the impact process of liquid metal droplets,we analyze the influence of different initial conditions and substrate materials on droplet spreading,impact force,and elastic wave propagation on the substrate.It is found that an agglomeration phenomenon can be observed when the liquid metal droplets impact onto a soft elastomer substrate,which is not observed as a metal substrate is employed.Regardless of the substrate material,when surface tension dominates the diffusion,the diffusion factor of droplets is proportional to We(Weber number).It is also observed that the self-similarity of liquid metal droplet impact force on copper substrates,which is not the case for soft elastomer substrates.Using smoothed particle hydrodynamics(SPH)simulations,the time-domain curve and peak point of the droplet can be well predicted for a metal substrate.Furthermore,by recording the acceleration signal on the substrates,we further obtain the energy radiated by elastic waves,providing an explanation for energy conversion during the impact process with varying parameters.The results provide an additional understanding on the complex impact behaviors of liquid metal droplets.