Based on the interpersonal function in Halliday’s systemic functional grammar,"Miranda Warnings",the typical English Police Caution,is analyzed from the aspects of Mood system,Modality system and Appraisal ...Based on the interpersonal function in Halliday’s systemic functional grammar,"Miranda Warnings",the typical English Police Caution,is analyzed from the aspects of Mood system,Modality system and Appraisal system,with the aim of exploring its interpersonal meanings.Results show that:first,the declarative mood and interrogative mood used in the police caution protect the legitimate rights of the interrogated;second,the widely use of Low value modal verbs demonstrates a more humane and democratic legislation principle;and third,the absence of Affect resources and the frequent application of Capacity resources narrow the interpersonal distance between policeman and the interrogated,reflecting the transformation in policeman’s interrogation practices.展开更多
Flash floods are a major cause of death and destruction to property on a worldwide scale. In the UK sudden flooding has been the cause of the loss of over 60 lives during the last century. Forecasting these events to ...Flash floods are a major cause of death and destruction to property on a worldwide scale. In the UK sudden flooding has been the cause of the loss of over 60 lives during the last century. Forecasting these events to give enough warning is a major concern: after the 2004 flood at Boscastle, Cornwall UK the Environment Agency (2004) stated that it was not possible to provide a warning in such a fast reacting and small catchment. This is untrue since the Agency had already implemented a real time non-linear flow model as part of a flood warning system on the upper Brue in Somerset UK. This model is described in this paper as it has been applied to the Lynmouth flood of 1952, and briefly for the Boscastle catchment, both of which have an area of about 20 km2. The model uses locally measured SMD and saturated hydraulic conductivity data. With the addition of further parameters the model has been successfully used nationwide.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high inves...In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high investment in software and hardware and cannot achieve intensive multi-level deployment.This paper realizes the goal of system scalability by introducing micro service architecture and technology stack and realizes the goal of resource intensification by introducing the idea of a data forwarding agent.The designed architecture scheme has been practically applied in the“Jiangxi emergency early warning information release system software platform(phase I)project”(hereinafter referred to as“provincial emergency”),which meets the needs of flexible deployment of multi-level applications across meteorological wide area network(WAN),business private network of other commissions,offices,and bureaus,government extranet,Internet and other complex networks,and fully verifies the scientificity and rationality of the scheme.It has achieved the goal of intensive and scalable construction of provincial emergencies under the complex network environment,greatly improved the early warning capacity and communication capacity of emergencies and comprehensive disasters,provided a reliable guarantee for disaster prevention and reduction,and provided a reference for the construction of current and future early warning release system and capacity improvement project.展开更多
BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocomp...BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocompromised patients.It carries high morbidity and mortality,requiring early diagnosis and timely intervention.Various prognostic scoring systems help in triaging critically ill patients.The National Early Warning Score 2(NEWS 2)scoring system is a widely used physiological assessment tool that evaluates clinical deterioration based on vital parameters,but its standard form lacks specificity for risk stratification in EPN,necessitating modifications to improve treatment decisionmaking and prognostic accuracy in this critical condition.AIM To highlight the need to modify the NEWS 2 score to enable more intense monitoring and better treatment outcomes.METHODS This prospective study was done on all EPN patients admitted to our hospital over the past 12 years.A weighted average risk-stratification index was calculated for each of the three groups,mortality risk was calculated for each of the NEWS 2 scores,and the need for intervention for each of the three groups was calculated.The NEWS 2 score was subsequently modified with 0-6,7-14 and 15-20 scores included in groups 1,2 and 3,respectively.RESULTS A total of 171 patients with EPN were included in the study,with a predominant association with diabetes(90.6%)and a female-to-male ratio of 1.5:1.The combined prognostic scoring of the three groups was 10.7,13.0,and 21.9,respectively(P<0.01).All patients managed conservatively belonged to group 1(P<0.01).Eight patients underwent early nephrectomy,with six from group 3(P<0.01).Overall mortality was 8(4.7%),with seven from group 3(87.5%).The cutoff NEWS 2 score for mortality was identified to be 15,with a sensitivity of 87.5%,specificity of 96.9%,and an overall accuracy rate of 96.5%.The area under the curve to predict mortality based on the NEWS 2 score was 0.98,with a confidence interval of(0.97,1.0)and P<0.001.CONCLUSION Modified NEWS 2(mNEWS 2)score dramatically aids in the appropriate assessment of treatment-related outcomes.MNEWS 2 scores should become the practice standard to reduce the morbidity and mortality associated with this dreaded illness.展开更多
The traditional academic warning methods for students in higher vocational colleges are relatively backward,single,and have many influencing factors,which have a limited effect on improving their learning ability.A da...The traditional academic warning methods for students in higher vocational colleges are relatively backward,single,and have many influencing factors,which have a limited effect on improving their learning ability.A data set was established by collecting academic warning data of students in a certain university.The importance of the school,major,grade,and warning level for the students was analyzed using the Pearson correlation coefficient,random forest variable importance,and permutation importance.It was found that the characteristic of the major has a great impact on the academic warning level.Countermeasures such as dynamic adjustment of majors,reform of cognitive adaptation of courses,full-cycle academic support,and data-driven precise intervention were proposed to provide theoretical support and practical paths for universities to improve the efficiency of academic warning and enhance students’learning ability.展开更多
Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the de...Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.展开更多
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y...Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.展开更多
Emphysematous pyelonephritis(EPN)is a severe,a lethal necrotizing upper urinary tract infection,characterized by gas production within the renal pa-renchyma,collecting system,or perinephric tissue.EPN is emerging as a...Emphysematous pyelonephritis(EPN)is a severe,a lethal necrotizing upper urinary tract infection,characterized by gas production within the renal pa-renchyma,collecting system,or perinephric tissue.EPN is emerging as a sig-nificant concern,necessitating early diagnosis,severity assessment,and timely intervention to improve outcomes.This study proposes a modified National Early Warning Score 2(mNEWS 2)to enhance risk stratification and predictive accuracy in EPN management.The mNEWS 2 refines the original NEWS 2 system,which aggregates 6 physiological indicators(body temperature,systolic blood pressure,pulse rate,oxygen saturation,breathing rate,and degree of consciousness),by incorporating weighted risk stratification indices and specific cutoff values derived from clinical observations,statistical modeling,and predictive per-formance analysis.A pilot study identified optimal thresholds,with a score of 15 maximizing predictive performance for mortality risk and intervention needs,validated through receiver operating characteristic curve analysis.So,the mNEWS 2 score represents a significant advancement in EPN management,offering improved risk stratification and treatment outcomes.展开更多
Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enh...Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enhance the timeliness and accuracy of warnings under seismic threats.Design/methodology/approach–A hierarchical architecture of the railway EEW system was adopted,in which self-built stations along the railway serve as the backbone and the national seismic network provides supplementary data.Warning zones were designed along the railway using overlapping trapezoidal layouts to cover seismic stations and reduce inter-regional time delays.Offline replay experiments were conducted using 82 historical earthquake events and records from 61 seismic stations to evaluate the timeliness and accuracy of warning information.Findings–The results indicate that the PLUM-based early warning method can issue emergency response information before destructive seismic waves arrive.Multiple earthquake experiments demonstrated high reliability and stability,with effective detection across different magnitudes and epicentral distances.Furthermore,the trapezoidal overlapping zone design improved regional consistency and significantly reduced missed alerts.Originality/value–This work represents the first systematic application of the PLUM method to high-speed railway EEW in China.By integrating railway operational requirements,the proposed method provides a practical and robust emergency response strategy,offering new insights into seismic risk mitigation for China’s high-speed railways.展开更多
An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 bas...An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 basin develop rapidly and are commonly caused by small but intense thunderstorm cells, these rain gauges were necessarily deployed within the watershed, and immediate telemetry and processing of rainfall delivered in 5-minute intervals is required. Available data show that damaging floods in this area occur only 30 min to 3 h following the delivery of 38 mm of rainfall or more in a single hour. Water levels along this stream can rise more than 3 m/h. Since full deployment in Nov. 2021, our system has successfully predicted 3 significant floods with one false positive.展开更多
Food safety has always been a critical issue concerning people s livelihoods.The complexity and diversity of hazardous substances in food make systematical and scientifical identification of potential risk factors aff...Food safety has always been a critical issue concerning people s livelihoods.The complexity and diversity of hazardous substances in food make systematical and scientifical identification of potential risk factors affecting food safety and accurate assessment and early warning for such risks one of the urgent problems for food safety inspection authorities.This paper explored food safety risk identification technologies,food safety risk monitoring technologies,and food safety risk early warning methods,aiming to provide theoretical support and research insights for improving food risk early warning systems.展开更多
The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach...The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach the warning target area,and carry out automatic disposal of lifeline engineering facilities.Through the construction of the National Earthquake Intensity Rapid Reporting and Early Warning Project,an earthquake early warning network consisting of over 1900 monitoring stations has been established in the Beijing-Tianjin-Hebei Urban Agglomeration.The early warning system has achieved second level earthquake warning and minute level intensity rapid reporting.The implementation of these functions relies on the system's ability to timely,accurately,and reliably identify seismic waves.But with the development of social economy,the background noise of earthquake observation environment is becoming increasingly complex,which brings certain challenges to earthquake wave recognition,some interference events have the risk of triggering the earthquake warning system incorrectly.Therefore,this article focuses on seismic wave recognition in complex noise environments and proposes a seismic wave detection method based on triangulation to enhance the antiinterference ability and recognition accuracy of early warning systems.展开更多
The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse m...The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse mechanisms of the cavern in the Yebatan Hydropower Station through using microseismic (MS) monitoring and displacement measurements. We developed a multi-parameter deformation early warning model that integrates three critical indicators: deformation rate, rate increment, and tangential angle of the deformation time curve. The results of the early warning model show a significant and abrupt increase in the deformation of the rock mass during the collapse process. The safety and stability of the local cavern in the face of excavation-induced disturbances are meticulously assessed utilizing MS data. Spatiotemporal analysis of the MS monitoring indicates a high frequency of MS events during the blasting phase, with a notable clustering of these events in the vicinity of the fault. These research results provide a valuable reference for risk warnings and stability assessments in the fault development zones of analogous caverns.展开更多
This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is...This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction.展开更多
To explore the clinical characteristics,pathogenesis,and treatment efficacy of patients with stroke warning syndrome(SWS).Methods:Ten patients with internal capsule early warning syndrome who visited the Neurology Dep...To explore the clinical characteristics,pathogenesis,and treatment efficacy of patients with stroke warning syndrome(SWS).Methods:Ten patients with internal capsule early warning syndrome who visited the Neurology Department of our hospital from 2019 to 2023 were enrolled.Their clinical data were summarized,and the etiology,pathogenesis,imaging features,and treatment outcomes were discussed in light of previous literature.Results:Among the patients,there were 5 males and 5 females,with an average age of 60 years.The number of attacks ranged from 4 to 9,and the duration of each attack varied from 3 to 60 minutes.Five patients underwent intravenous thrombolysis.Four patients still experienced recurrent attacks after thrombolysis.They were then provided with volume expansion,anticoagulation,antiplatelet aggregation,vasospasm-relief therapies,and symptomatic treatment as appropriate.Three months later,the mRs score of all patients was≤2 points.Conclusion:Although SWS is not common,it is associated with a high risk of early infarction and a poor clinical prognosis.Clinicians should be fully aware of stroke warning syndrome and strive to prevent its clinical progression.展开更多
Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,nam...Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,namely,"real-time monitoring system,forecasting and prediction system,monitoring and early warning system,and smart service system".It will enable intelligent,dynamic meteorological monitoring,early warning,and forecasting services for the occurrence and development of alfalfa pests and diseases,providing technical support for scientifically controlling their harm and improving yield and quality.展开更多
An effective lightning warning system can ensure the safety of aircraft and promote the development of a low-altitude economy.Compared with weather radars,ground-based atmospheric electric field mills can monitor elec...An effective lightning warning system can ensure the safety of aircraft and promote the development of a low-altitude economy.Compared with weather radars,ground-based atmospheric electric field mills can monitor electric field variations in low-altitude regions in real-time without being affected by ground clutter.To address current challenges in lightning warning methods based on atmospheric electric field data—such as limited lightning location samples and a high false alarm rate(FAR)—this thesis proposes a lightning warning model that integrates multi-station atmospheric electric field data with meteorological variables such as temperature and humidity,combined with data augmentation techniques.First,temporal and lagging features of the electric field are extracted and fused with multidimensional meteorological data including temperature,humidity,wind speed,and total cloud cover.A spatial-temporal density-based spatial clustering of applications with noise(ST-DBSCAN)is employed to annotate samples across multiple stations.The mode-normalized Wasserstein generative adversarial network with gradient penalty(MN-WGAN-GP)is used to generate synthetic samples with distributions similar to real data.Finally,a lightning warning algorithm is constructed based on categorical boosting(CatBoost).Experimental results show that the model achieves a probability of detection(POD)of 82.89%and a FAR of 27.33%on the test set.The proposed algorithm contributes to the development of refined regional lightning warning technologies and ensures the safety of low-altitude operations.展开更多
BACKGROUND Enhancing postoperative recovery is a critical goal in clinical practice and the application of innovative nursing models can significantly contribute to this objective.AIM To investigate the effects of mot...BACKGROUND Enhancing postoperative recovery is a critical goal in clinical practice and the application of innovative nursing models can significantly contribute to this objective.AIM To investigate the effects of motivational and early warning nursing interventions on wound healing and sociopsychological adaptability in patients undergoing hepatobiliary surgery.METHODS A total of 160 patients who underwent surgical treatment in the hepatobiliary department of our hospital from January 2022 to June 2024 were selected and randomly divided into a control group and an observation group,with 80 patients in each group.The control group received routine nursing care,while the observation group received a combination of motivational and early warning nursing interventions.The wound healing status(class A,B,and C wound healing and healing time),social psychological adaptability,complications,postoperative recovery,and quality of life were compared between the two groups.RESULTS The wound healing rate in the observation group was higher than that in the control group,while the wound healing time was shorter(P<0.05).The social adaptability scores in the observation group were higher than those in the control group(P<0.05).The incidence of complications was lower in the observation group than in the control group(P<0.05).Postoperative recovery and quality of life were better in the observation group than in the control group(P<0.05).CONCLUSION Motivational and early warning nursing interventions are beneficial for promoting wound healing in patients undergoing hepatobiliary surgery,reducing the incidence of complications and improving socio-psychological adaptability and postoperative quality of life.These interventions should be promoted in clinical nursing practice.展开更多
文摘Based on the interpersonal function in Halliday’s systemic functional grammar,"Miranda Warnings",the typical English Police Caution,is analyzed from the aspects of Mood system,Modality system and Appraisal system,with the aim of exploring its interpersonal meanings.Results show that:first,the declarative mood and interrogative mood used in the police caution protect the legitimate rights of the interrogated;second,the widely use of Low value modal verbs demonstrates a more humane and democratic legislation principle;and third,the absence of Affect resources and the frequent application of Capacity resources narrow the interpersonal distance between policeman and the interrogated,reflecting the transformation in policeman’s interrogation practices.
文摘Flash floods are a major cause of death and destruction to property on a worldwide scale. In the UK sudden flooding has been the cause of the loss of over 60 lives during the last century. Forecasting these events to give enough warning is a major concern: after the 2004 flood at Boscastle, Cornwall UK the Environment Agency (2004) stated that it was not possible to provide a warning in such a fast reacting and small catchment. This is untrue since the Agency had already implemented a real time non-linear flow model as part of a flood warning system on the upper Brue in Somerset UK. This model is described in this paper as it has been applied to the Lynmouth flood of 1952, and briefly for the Boscastle catchment, both of which have an area of about 20 km2. The model uses locally measured SMD and saturated hydraulic conductivity data. With the addition of further parameters the model has been successfully used nationwide.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
文摘In order to solve the problems of high coupling and poor scalability of the traditional monomer early warning release system architecture,multi-level deployment in a complex network environment will lead to high investment in software and hardware and cannot achieve intensive multi-level deployment.This paper realizes the goal of system scalability by introducing micro service architecture and technology stack and realizes the goal of resource intensification by introducing the idea of a data forwarding agent.The designed architecture scheme has been practically applied in the“Jiangxi emergency early warning information release system software platform(phase I)project”(hereinafter referred to as“provincial emergency”),which meets the needs of flexible deployment of multi-level applications across meteorological wide area network(WAN),business private network of other commissions,offices,and bureaus,government extranet,Internet and other complex networks,and fully verifies the scientificity and rationality of the scheme.It has achieved the goal of intensive and scalable construction of provincial emergencies under the complex network environment,greatly improved the early warning capacity and communication capacity of emergencies and comprehensive disasters,provided a reliable guarantee for disaster prevention and reduction,and provided a reference for the construction of current and future early warning release system and capacity improvement project.
文摘BACKGROUND Emphysematous pyelonephritis(EPN)is a life-threatening necrotizing renal parenchyma infection characterized by gas formation due to severe bacterial infection,predominantly affecting diabetic and immunocompromised patients.It carries high morbidity and mortality,requiring early diagnosis and timely intervention.Various prognostic scoring systems help in triaging critically ill patients.The National Early Warning Score 2(NEWS 2)scoring system is a widely used physiological assessment tool that evaluates clinical deterioration based on vital parameters,but its standard form lacks specificity for risk stratification in EPN,necessitating modifications to improve treatment decisionmaking and prognostic accuracy in this critical condition.AIM To highlight the need to modify the NEWS 2 score to enable more intense monitoring and better treatment outcomes.METHODS This prospective study was done on all EPN patients admitted to our hospital over the past 12 years.A weighted average risk-stratification index was calculated for each of the three groups,mortality risk was calculated for each of the NEWS 2 scores,and the need for intervention for each of the three groups was calculated.The NEWS 2 score was subsequently modified with 0-6,7-14 and 15-20 scores included in groups 1,2 and 3,respectively.RESULTS A total of 171 patients with EPN were included in the study,with a predominant association with diabetes(90.6%)and a female-to-male ratio of 1.5:1.The combined prognostic scoring of the three groups was 10.7,13.0,and 21.9,respectively(P<0.01).All patients managed conservatively belonged to group 1(P<0.01).Eight patients underwent early nephrectomy,with six from group 3(P<0.01).Overall mortality was 8(4.7%),with seven from group 3(87.5%).The cutoff NEWS 2 score for mortality was identified to be 15,with a sensitivity of 87.5%,specificity of 96.9%,and an overall accuracy rate of 96.5%.The area under the curve to predict mortality based on the NEWS 2 score was 0.98,with a confidence interval of(0.97,1.0)and P<0.001.CONCLUSION Modified NEWS 2(mNEWS 2)score dramatically aids in the appropriate assessment of treatment-related outcomes.MNEWS 2 scores should become the practice standard to reduce the morbidity and mortality associated with this dreaded illness.
基金supported by the Basic Ability Improvement Project of Young and Middle-Aged Teachers in Colleges and Universities of Guangxi(2022KY1922,2021KY1938).
文摘The traditional academic warning methods for students in higher vocational colleges are relatively backward,single,and have many influencing factors,which have a limited effect on improving their learning ability.A data set was established by collecting academic warning data of students in a certain university.The importance of the school,major,grade,and warning level for the students was analyzed using the Pearson correlation coefficient,random forest variable importance,and permutation importance.It was found that the characteristic of the major has a great impact on the academic warning level.Countermeasures such as dynamic adjustment of majors,reform of cognitive adaptation of courses,full-cycle academic support,and data-driven precise intervention were proposed to provide theoretical support and practical paths for universities to improve the efficiency of academic warning and enhance students’learning ability.
基金supported by the National Natural Science Foundation of China(52476200,52106244)the Guangdong Basic and Applied Basic Research Foundation(2024A1515030124)+1 种基金the Science and Technology Project of China Southern Power Grid under Grant GDKJXM20230246(030100KC23020017)the Fundamental Research Funds for the Central Universities。
文摘Due to batteries inconsistencies and potential faults in battery management systems,slight overcharging remains a common yet insufficiently understood safety risk,lacking effective warning methods.To illuminate the degradation behavior and failure mechanism of various overcharged states(100%SOC,105%SOC,110%SOC,and 115%SOC),multiple advanced in-situ characterization techniques(accelerating rate calorimeter,electrochemical impedance spectroscopy,ultrasonic scanning,and expansion instrument)were utilized.Additionally,re-overcharge-induced thermal runaway(TR)tests were conducted,with a specific emphasis on the evolution of the expansion force signal.Results indicated significant degradation at 110%SOC including conductivity loss,loss of lithium inventory,and loss of active material accompanied by internal gas generation.These failure behaviors slow down the expansion force rate during reovercharging,reducing the efficacy of active warnings that depend on rate thresholds of expansion force.Specifically,the warning time for 115%SOC battery is only 144 s,which is 740 s shorter than that for fresh battery,and the time to TR is advanced by 9 min.Moreover,the initial self-heating temperature(T1)is reduced by 62.4℃compared to that of fresh battery,reaching only 70.8℃.To address the low safety of overcharged batteries,a passive overcharge warning method utilizing relaxation expansion force was proposed,based on the continued gas generation after stopping charging,leading to a sustained increase in force.Compared to active methods that rely on thresholds of expansion force rate,the passive method can issue warnings 115 s earlier.By combining the passive and active warning methods,guaranteed effective overcharge warning can be issued 863-884 s before TR.This study introduces a novel perspective for enhancing the safety of batteries.
基金support by the National Natural Science Foundation of China(52201077)the Natural Science Foundation of Shandong Province(ZR2022QE191)+1 种基金Elite Scheme of Shandong University of Science and Technology(0104060541123)Talent introduction and Research Start-up Fund of Shandong University of Science and Technology(0104060510124).
文摘Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials.
文摘Emphysematous pyelonephritis(EPN)is a severe,a lethal necrotizing upper urinary tract infection,characterized by gas production within the renal pa-renchyma,collecting system,or perinephric tissue.EPN is emerging as a sig-nificant concern,necessitating early diagnosis,severity assessment,and timely intervention to improve outcomes.This study proposes a modified National Early Warning Score 2(mNEWS 2)to enhance risk stratification and predictive accuracy in EPN management.The mNEWS 2 refines the original NEWS 2 system,which aggregates 6 physiological indicators(body temperature,systolic blood pressure,pulse rate,oxygen saturation,breathing rate,and degree of consciousness),by incorporating weighted risk stratification indices and specific cutoff values derived from clinical observations,statistical modeling,and predictive per-formance analysis.A pilot study identified optimal thresholds,with a score of 15 maximizing predictive performance for mortality risk and intervention needs,validated through receiver operating characteristic curve analysis.So,the mNEWS 2 score represents a significant advancement in EPN management,offering improved risk stratification and treatment outcomes.
文摘Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enhance the timeliness and accuracy of warnings under seismic threats.Design/methodology/approach–A hierarchical architecture of the railway EEW system was adopted,in which self-built stations along the railway serve as the backbone and the national seismic network provides supplementary data.Warning zones were designed along the railway using overlapping trapezoidal layouts to cover seismic stations and reduce inter-regional time delays.Offline replay experiments were conducted using 82 historical earthquake events and records from 61 seismic stations to evaluate the timeliness and accuracy of warning information.Findings–The results indicate that the PLUM-based early warning method can issue emergency response information before destructive seismic waves arrive.Multiple earthquake experiments demonstrated high reliability and stability,with effective detection across different magnitudes and epicentral distances.Furthermore,the trapezoidal overlapping zone design improved regional consistency and significantly reduced missed alerts.Originality/value–This work represents the first systematic application of the PLUM method to high-speed railway EEW in China.By integrating railway operational requirements,the proposed method provides a practical and robust emergency response strategy,offering new insights into seismic risk mitigation for China’s high-speed railways.
文摘An effective warning system for flash floods along the upper River des Peres, a small urban stream in eastern Missouri, USA, is based on three enterprise-level, automated rain gauges.Because floods in this 25 km~2 basin develop rapidly and are commonly caused by small but intense thunderstorm cells, these rain gauges were necessarily deployed within the watershed, and immediate telemetry and processing of rainfall delivered in 5-minute intervals is required. Available data show that damaging floods in this area occur only 30 min to 3 h following the delivery of 38 mm of rainfall or more in a single hour. Water levels along this stream can rise more than 3 m/h. Since full deployment in Nov. 2021, our system has successfully predicted 3 significant floods with one false positive.
基金Supported by Hebei Provincial Outstanding Talent Development ProgramTangshan Talent Funding Project(A202202005).
文摘Food safety has always been a critical issue concerning people s livelihoods.The complexity and diversity of hazardous substances in food make systematical and scientifical identification of potential risk factors affecting food safety and accurate assessment and early warning for such risks one of the urgent problems for food safety inspection authorities.This paper explored food safety risk identification technologies,food safety risk monitoring technologies,and food safety risk early warning methods,aiming to provide theoretical support and research insights for improving food risk early warning systems.
基金supported by the Spark Program of Earthquake Science and Technology(No.XH23003C)。
文摘The earthquake early warning system is an effective means of disaster reduction to reduce losses caused by earthquakes,it can release earthquake warning information to the public before destructive seismic waves reach the warning target area,and carry out automatic disposal of lifeline engineering facilities.Through the construction of the National Earthquake Intensity Rapid Reporting and Early Warning Project,an earthquake early warning network consisting of over 1900 monitoring stations has been established in the Beijing-Tianjin-Hebei Urban Agglomeration.The early warning system has achieved second level earthquake warning and minute level intensity rapid reporting.The implementation of these functions relies on the system's ability to timely,accurately,and reliably identify seismic waves.But with the development of social economy,the background noise of earthquake observation environment is becoming increasingly complex,which brings certain challenges to earthquake wave recognition,some interference events have the risk of triggering the earthquake warning system incorrectly.Therefore,this article focuses on seismic wave recognition in complex noise environments and proposes a seismic wave detection method based on triangulation to enhance the antiinterference ability and recognition accuracy of early warning systems.
基金Projects(52209132, 52309156) supported by the National Natural Science Foundation of ChinaProject(BK20251905) supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Project(252102320037) supported by the Henan Province Science and Technology Research,ChinaProject(CKWV20231173/KY) supported by the CRSRI Open Research Program,ChinaProject(2023KSD15) supported by the Open Research Fund of Hubei Provincial Key Laboratory of Construction and Management in Hydropower Engineering,China。
文摘The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse mechanisms of the cavern in the Yebatan Hydropower Station through using microseismic (MS) monitoring and displacement measurements. We developed a multi-parameter deformation early warning model that integrates three critical indicators: deformation rate, rate increment, and tangential angle of the deformation time curve. The results of the early warning model show a significant and abrupt increase in the deformation of the rock mass during the collapse process. The safety and stability of the local cavern in the face of excavation-induced disturbances are meticulously assessed utilizing MS data. Spatiotemporal analysis of the MS monitoring indicates a high frequency of MS events during the blasting phase, with a notable clustering of these events in the vicinity of the fault. These research results provide a valuable reference for risk warnings and stability assessments in the fault development zones of analogous caverns.
文摘This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction.
基金Project of Chengde Municipal Science and Technology Bureau,Project Name:A Comparative Study on the Efficacy and Safety of Tirofiban and Argatroban in the Treatment of Acute Cerebral Infarction.Project Code:202402A045.
文摘To explore the clinical characteristics,pathogenesis,and treatment efficacy of patients with stroke warning syndrome(SWS).Methods:Ten patients with internal capsule early warning syndrome who visited the Neurology Department of our hospital from 2019 to 2023 were enrolled.Their clinical data were summarized,and the etiology,pathogenesis,imaging features,and treatment outcomes were discussed in light of previous literature.Results:Among the patients,there were 5 males and 5 females,with an average age of 60 years.The number of attacks ranged from 4 to 9,and the duration of each attack varied from 3 to 60 minutes.Five patients underwent intravenous thrombolysis.Four patients still experienced recurrent attacks after thrombolysis.They were then provided with volume expansion,anticoagulation,antiplatelet aggregation,vasospasm-relief therapies,and symptomatic treatment as appropriate.Three months later,the mRs score of all patients was≤2 points.Conclusion:Although SWS is not common,it is associated with a high risk of early infarction and a poor clinical prognosis.Clinicians should be fully aware of stroke warning syndrome and strive to prevent its clinical progression.
文摘Leveraging the achievements of the smart meteorological system nationwide,a meteorological monitoring and early warning system for alfalfa pests and diseases can be formed through the establishment of four systems,namely,"real-time monitoring system,forecasting and prediction system,monitoring and early warning system,and smart service system".It will enable intelligent,dynamic meteorological monitoring,early warning,and forecasting services for the occurrence and development of alfalfa pests and diseases,providing technical support for scientifically controlling their harm and improving yield and quality.
基金funded by the National Natural Science Foundation of China,grant number 41605121Foundation of Key Laboratory of Big Data&Artificial Intelligence in Transportation(Beijing Jiaotong University),Ministry of Education(No.BATLAB202402)。
文摘An effective lightning warning system can ensure the safety of aircraft and promote the development of a low-altitude economy.Compared with weather radars,ground-based atmospheric electric field mills can monitor electric field variations in low-altitude regions in real-time without being affected by ground clutter.To address current challenges in lightning warning methods based on atmospheric electric field data—such as limited lightning location samples and a high false alarm rate(FAR)—this thesis proposes a lightning warning model that integrates multi-station atmospheric electric field data with meteorological variables such as temperature and humidity,combined with data augmentation techniques.First,temporal and lagging features of the electric field are extracted and fused with multidimensional meteorological data including temperature,humidity,wind speed,and total cloud cover.A spatial-temporal density-based spatial clustering of applications with noise(ST-DBSCAN)is employed to annotate samples across multiple stations.The mode-normalized Wasserstein generative adversarial network with gradient penalty(MN-WGAN-GP)is used to generate synthetic samples with distributions similar to real data.Finally,a lightning warning algorithm is constructed based on categorical boosting(CatBoost).Experimental results show that the model achieves a probability of detection(POD)of 82.89%and a FAR of 27.33%on the test set.The proposed algorithm contributes to the development of refined regional lightning warning technologies and ensures the safety of low-altitude operations.
文摘BACKGROUND Enhancing postoperative recovery is a critical goal in clinical practice and the application of innovative nursing models can significantly contribute to this objective.AIM To investigate the effects of motivational and early warning nursing interventions on wound healing and sociopsychological adaptability in patients undergoing hepatobiliary surgery.METHODS A total of 160 patients who underwent surgical treatment in the hepatobiliary department of our hospital from January 2022 to June 2024 were selected and randomly divided into a control group and an observation group,with 80 patients in each group.The control group received routine nursing care,while the observation group received a combination of motivational and early warning nursing interventions.The wound healing status(class A,B,and C wound healing and healing time),social psychological adaptability,complications,postoperative recovery,and quality of life were compared between the two groups.RESULTS The wound healing rate in the observation group was higher than that in the control group,while the wound healing time was shorter(P<0.05).The social adaptability scores in the observation group were higher than those in the control group(P<0.05).The incidence of complications was lower in the observation group than in the control group(P<0.05).Postoperative recovery and quality of life were better in the observation group than in the control group(P<0.05).CONCLUSION Motivational and early warning nursing interventions are beneficial for promoting wound healing in patients undergoing hepatobiliary surgery,reducing the incidence of complications and improving socio-psychological adaptability and postoperative quality of life.These interventions should be promoted in clinical nursing practice.