Base isolation can effectively reduce the seismic forces on a superstructure,particularly in lowto medium-rise buildings.However,under strong near-fault ground motions,pounding may occur at the isolation level between...Base isolation can effectively reduce the seismic forces on a superstructure,particularly in lowto medium-rise buildings.However,under strong near-fault ground motions,pounding may occur at the isolation level between the baseisolated building(BIB)and its surrounding retaining walls.To effectively investigate the behavior of the BIB pounding with adjacent structures,after assessing some commonly used impact models,a modified Kelvin impact model is proposed in this paper.Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case.At the same time,inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures.The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models.However,the difference between the numerical results from the various impact analytical models is not significant.Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding.It is shown that pounding can substantially increase floor accelerations,especially at the ground floor where impacts occur.Higher modes of vibration are excited during poundings,increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure.Furthermore,higher ductility demands can be imposed on lower floors of the superstructure.Moreover,impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure.Finally,the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.展开更多
Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maxim...Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.展开更多
In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derive...In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derived geolocated building damage data for earthquakes,via regression-and classification-based models,respectively.For the aggregated observational data,models were ranked via predictive performance of mortality,population displacement,building damage,and building destruction for 375 observations across 161 earthquakes in 61 countries.For the satellite image-derived data,models were ranked via classification performance(damaged/unaff ected)of 369,813 geolocated buildings for 26 earthquakes in 15 countries.Grouped k-fold,3-repeat cross validation was used to ensure out-of-sample predictive performance.Feature importance of several variables used as proxies for vulnerability to disasters indicates covariate utility.The 2023 Türkiye-Syria earthquake event was used to explore model limitations for extreme events.However,applying the AdaBoost model on the 27,032 held-out buildings of the 2023 Türkiye-Syria earthquake event,predictions had an AUC of 0.93.Therefore,without any geospatial,building-specific,or direct satellite image information,this model accurately classified building damage,with significantly improved performance over satellite image trained models found in the literature.展开更多
Natural hazards impact interdependent infrastructure networks that keep modern society functional.While a va-riety of modelling approaches are available to represent critical infrastructure networks(CINs)on different ...Natural hazards impact interdependent infrastructure networks that keep modern society functional.While a va-riety of modelling approaches are available to represent critical infrastructure networks(CINs)on different scales and analyse the impacts of natural hazards,a recurring challenge for all modelling approaches is the availability and accessibility of sufficiently high-quality input and validation data.The resulting data gaps often require mod-ellers to assume specific technical parameters,functional relationships,and system behaviours.In other cases,expert knowledge from one sector is extrapolated to other sectoral structures or even cross-sectorally applied to fill data gaps.The uncertainties introduced by these assumptions and extrapolations and their influence on the quality of modelling outcomes are often poorly understood and difficult to capture,thereby eroding the reliability of these models to guide resilience enhancements.Additionally,ways of overcoming the data avail-ability challenges in CIN modelling,with respect to each modelling purpose,remain an open question.To address these challenges,a generic modelling workflow is derived from existing modelling approaches to examine model definition and validations,as well as the six CIN modelling stages,including mapping of infrastructure assets,quantification of dependencies,assessment of natural hazard impacts,response&recovery,quantification of CI services,and adaptation measures.The data requirements of each stage were systematically defined,and the literature on potential sources was reviewed to enhance data collection and raise awareness of potential pitfalls.The application of the derived workflow funnels into a framework to assess data availability challenges.This is shown through three case studies,taking into account their different modelling purposes:hazard hotspot assess-ments,hazard risk management,and sectoral adaptation.Based on the three model purpose types provided,a framework is suggested to explore the implications of data scarcity for certain data types,as well as their reasons and consequences for CIN model reliability.Finally,a discussion on overcoming the challenges of data scarcity is presented.展开更多
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of ...Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.展开更多
In this paper, we propose an impact finite element (FE) model for an airbag landing buf- fer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence ...In this paper, we propose an impact finite element (FE) model for an airbag landing buf- fer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experi- mental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs) to evalu- ate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR) to serve as a modified objective function. A radial basis function (RBF) is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.展开更多
A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens...A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.展开更多
We applied the model of American Meteorological Society-Environmental Protection Agency Regulatory Model(AERMOD) as a tool for the analysis of nitrogen dioxide(NO2) emissions from a cement complex as a part of the...We applied the model of American Meteorological Society-Environmental Protection Agency Regulatory Model(AERMOD) as a tool for the analysis of nitrogen dioxide(NO2) emissions from a cement complex as a part of the environmental impact assessment.The dispersion of NO2 from four cement plants within the selected cement complex were investigated both by measurement and AERMOD simulation in dry and wet seasons.Simulated values of NO2 emissions were compared with those obtained during a 7-day continuous measurement campaign at 12 receptors.It was predicted that NO2 concentration peaks were found more within 1 to 5 km,where the measurement and simulation were in good agreement,than at the receptors 5 km further away from the reference point.The QuantileQuantile plots of NO2 concentrations in dry season were mostly fitted to the middle line compared to those in wet season.This can be attributed to high NO2 wet deposition.The results show that for both the measurement and the simulation using the AERMOD,NO2 concentrations do not exceed the NO2 concentration limit set by the National Ambient Air Quality Standards(NAAQS) of Thailand.This indicates that NO2 emissions from the cement complex have no significant impact on nearby communities.It can be concluded that the AERMOD can provide useful information to identify high pollution impact areas for the EIA guidelines.展开更多
Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of...Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.展开更多
This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. Aft...This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.展开更多
An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquat...An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...展开更多
This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test w...This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test were applied to compare the speed and flow characteristics between work zone and non-work zone conditions. Furthermore, we analyzed the mobility characteristics of freeway work zones within the urban area of Milwaukee, WI, USA. More than 50% of investigated work zones have experienced speed reduction and 15%-30% is necessary reduced volumes. Speed reduction was more significant within and at the downstream of work zones than at the upstream.展开更多
Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic ...Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM).展开更多
A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle and two heavy ones is considered. Existence and non degeneracy of the ground state is shown.
There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic...There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.展开更多
Based on the analysis of completeness and finiteness of HF molecular vibrational levels, HF systemic vibrational heat capacity is studied with quantum statistical and full set of vibrational energy level determined AM...Based on the analysis of completeness and finiteness of HF molecular vibrational levels, HF systemic vibrational heat capacity is studied with quantum statistical and full set of vibrational energy level determined AM (algebraic method). The results show that correct vibrational description and vibrational energy level set of HF system are key factors in calculating heat capacity, HF heat capacity data determined by AM energy spectra {Eυ} are much superior to the ones of harmonic oscillator model, AM results are agreement with experiment data.展开更多
基金National Natural Science Foundation of China Under Grant No.50778077 and 50878093
文摘Base isolation can effectively reduce the seismic forces on a superstructure,particularly in lowto medium-rise buildings.However,under strong near-fault ground motions,pounding may occur at the isolation level between the baseisolated building(BIB)and its surrounding retaining walls.To effectively investigate the behavior of the BIB pounding with adjacent structures,after assessing some commonly used impact models,a modified Kelvin impact model is proposed in this paper.Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case.At the same time,inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures.The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models.However,the difference between the numerical results from the various impact analytical models is not significant.Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding.It is shown that pounding can substantially increase floor accelerations,especially at the ground floor where impacts occur.Higher modes of vibration are excited during poundings,increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure.Furthermore,higher ductility demands can be imposed on lower floors of the superstructure.Moreover,impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure.Finally,the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.
基金Supported by National Natural Science Foundation of China (No. 50578109)Tianjin Municipal Natural Science Foundation of China(No. 05YFGMGC10900)
文摘Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.
基金funded by the Engineering&Physical Sciences Research Council(EPSRC)Impact Acceleration Account Award EP/R511742/1。
文摘In this study,a broad range of supervised machine learning and parametric statistical,geospatial,and non-geospatial models were applied to model both aggregated observed impact estimate data and satellite image-derived geolocated building damage data for earthquakes,via regression-and classification-based models,respectively.For the aggregated observational data,models were ranked via predictive performance of mortality,population displacement,building damage,and building destruction for 375 observations across 161 earthquakes in 61 countries.For the satellite image-derived data,models were ranked via classification performance(damaged/unaff ected)of 369,813 geolocated buildings for 26 earthquakes in 15 countries.Grouped k-fold,3-repeat cross validation was used to ensure out-of-sample predictive performance.Feature importance of several variables used as proxies for vulnerability to disasters indicates covariate utility.The 2023 Türkiye-Syria earthquake event was used to explore model limitations for extreme events.However,applying the AdaBoost model on the 27,032 held-out buildings of the 2023 Türkiye-Syria earthquake event,predictions had an AUC of 0.93.Therefore,without any geospatial,building-specific,or direct satellite image information,this model accurately classified building damage,with significantly improved performance over satellite image trained models found in the literature.
基金partially funded by Germany’s Federal Ministry of Education and Research within the framework of IKARIM and the PARADeS project,grant number 13N15273,the ARSINOE project(GA 101037424)the MIRACA(GA 101093854)under European Union’s H2020 innovation action programme.
文摘Natural hazards impact interdependent infrastructure networks that keep modern society functional.While a va-riety of modelling approaches are available to represent critical infrastructure networks(CINs)on different scales and analyse the impacts of natural hazards,a recurring challenge for all modelling approaches is the availability and accessibility of sufficiently high-quality input and validation data.The resulting data gaps often require mod-ellers to assume specific technical parameters,functional relationships,and system behaviours.In other cases,expert knowledge from one sector is extrapolated to other sectoral structures or even cross-sectorally applied to fill data gaps.The uncertainties introduced by these assumptions and extrapolations and their influence on the quality of modelling outcomes are often poorly understood and difficult to capture,thereby eroding the reliability of these models to guide resilience enhancements.Additionally,ways of overcoming the data avail-ability challenges in CIN modelling,with respect to each modelling purpose,remain an open question.To address these challenges,a generic modelling workflow is derived from existing modelling approaches to examine model definition and validations,as well as the six CIN modelling stages,including mapping of infrastructure assets,quantification of dependencies,assessment of natural hazard impacts,response&recovery,quantification of CI services,and adaptation measures.The data requirements of each stage were systematically defined,and the literature on potential sources was reviewed to enhance data collection and raise awareness of potential pitfalls.The application of the derived workflow funnels into a framework to assess data availability challenges.This is shown through three case studies,taking into account their different modelling purposes:hazard hotspot assess-ments,hazard risk management,and sectoral adaptation.Based on the three model purpose types provided,a framework is suggested to explore the implications of data scarcity for certain data types,as well as their reasons and consequences for CIN model reliability.Finally,a discussion on overcoming the challenges of data scarcity is presented.
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
基金supported by the National Natural Science Foundation of China (Grant No.41925030)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA23090403)+2 种基金the Youth Innovation Promotion Association of the CAS (Grant No.2017426)the National Natural Science Foundation of China (Grant No.51709259)the CAS “Light of West China” Program。
文摘Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.
基金co-supported by the National Natural Science Foundation of China(No.11472132)the Fundamental Research Funds for Central Universities in China(No.NS2014002)+1 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.0113Y01)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions in China
文摘In this paper, we propose an impact finite element (FE) model for an airbag landing buf- fer system. First, an impact FE model has been formulated for a typical airbag landing buffer system. We use the independence of the structure FE model from the full impact FE model to develop a hierarchical updating scheme for the recovery module FE model and the airbag system FE model. Second, we define impact responses at key points to compare the computational and experimental results to resolve the inconsistency between the experimental data sampling frequency and experi- mental triggering. To determine the typical characteristics of the impact dynamics response of the airbag landing buffer system, we present the impact response confidence factors (IRCFs) to evalu- ate how consistent the computational and experiment results are. An error function is defined between the experimental and computational results at key points of the impact response (KPIR) to serve as a modified objective function. A radial basis function (RBF) is introduced to construct updating variables for a surrogate model for updating the objective function, thereby converting the FE model updating problem to a soluble optimization problem. Finally, the developed method has been validated using an experimental and computational study on the impact dynamics of a classic airbag landing buffer system.
文摘A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.
基金the Royal Golden Jubilee Ph.D program (IUG50K0021)Thailand Research Fund (TRF) for the financial support
文摘We applied the model of American Meteorological Society-Environmental Protection Agency Regulatory Model(AERMOD) as a tool for the analysis of nitrogen dioxide(NO2) emissions from a cement complex as a part of the environmental impact assessment.The dispersion of NO2 from four cement plants within the selected cement complex were investigated both by measurement and AERMOD simulation in dry and wet seasons.Simulated values of NO2 emissions were compared with those obtained during a 7-day continuous measurement campaign at 12 receptors.It was predicted that NO2 concentration peaks were found more within 1 to 5 km,where the measurement and simulation were in good agreement,than at the receptors 5 km further away from the reference point.The QuantileQuantile plots of NO2 concentrations in dry season were mostly fitted to the middle line compared to those in wet season.This can be attributed to high NO2 wet deposition.The results show that for both the measurement and the simulation using the AERMOD,NO2 concentrations do not exceed the NO2 concentration limit set by the National Ambient Air Quality Standards(NAAQS) of Thailand.This indicates that NO2 emissions from the cement complex have no significant impact on nearby communities.It can be concluded that the AERMOD can provide useful information to identify high pollution impact areas for the EIA guidelines.
基金supported by a grant from the International S cience and Technology Cooperation Projects of China,No.2011DFG33430
文摘Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.
基金supported by the Innovation Team Fund of the National Natural Science Foundation of China(11121202)
文摘This letter presents a theoretical model of the normal (head-on) collisions between two soft spheres for predicting the experimental characteristic of the coefficient of restitution dependent on impact velocity. After the contact force law between the contacted spheres during a collision is phenomenologically formulated in terms of the compression or overlap displacement under considera- tion of an elastic-plastic loading and a plastic unloading subprocesses, the coefficient of restitution is gained by the dynamic equation of the contact process once an initial impact velocity is input. It is found that the theoretical predictions of the coefficient of restitution varying with the impact velocity are well in agreement with the existing experimental characteristics which are fitted by the explicit formula.
文摘An accidental discharge of nitrobenzene happened in November 2005 in the Songhua River,China.The AQUATOX model was modified and adapted to simulate the time-dependent nitrobenzene distribution in this multimedia aquatic system and its potential ecological impacts.Nitrobenzene concentrations in flowing water,sediment,and biota were predicted.Based on the initial concentrations of nitrobenzene observed in the field during the accidental discharge,that is,0.167-1.47 mg/L at different river segments, the predic...
基金Project(61620106002)supported by the National Natural Science Foundation of ChinaProject(2016YFB0100906)supported by the National Key R&D Program in China+1 种基金Project(2015364X16030)supported by the Information Technology Research Project of Ministry of Transport of ChinaProject(2242015K42132)supported by the Fundamental Sciences of Southeast University,China
文摘This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test were applied to compare the speed and flow characteristics between work zone and non-work zone conditions. Furthermore, we analyzed the mobility characteristics of freeway work zones within the urban area of Milwaukee, WI, USA. More than 50% of investigated work zones have experienced speed reduction and 15%-30% is necessary reduced volumes. Speed reduction was more significant within and at the downstream of work zones than at the upstream.
文摘Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM).
文摘A time dependent Hamiltonian associated to the impact parameter model for the scattering of a light particle and two heavy ones is considered. Existence and non degeneracy of the ground state is shown.
文摘There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.
文摘Based on the analysis of completeness and finiteness of HF molecular vibrational levels, HF systemic vibrational heat capacity is studied with quantum statistical and full set of vibrational energy level determined AM (algebraic method). The results show that correct vibrational description and vibrational energy level set of HF system are key factors in calculating heat capacity, HF heat capacity data determined by AM energy spectra {Eυ} are much superior to the ones of harmonic oscillator model, AM results are agreement with experiment data.