The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ...Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.展开更多
The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as fol...The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we p...In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we propose a novel approach of exploring hybrid genetic algorithm based large-scale logistic distribution for BBG supermarket.We integrate greedy algorithm and hillclimbing algorithm into genetic algorithm.Greedy algorithm is applied to initialize the population,and then hill-climbing algorithm is used to optimize individuals in each generation after selection,crossover and mutation.Our approach is evaluated on the dataset of BBG Supermarket which is one of the top 10 supermarkets in China.Experimental results show that our method outperforms some other methods in the field.展开更多
With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of tran...With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.展开更多
随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动...随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动态交通路网模型,量化了不同类型的城市道路对物流车辆调度与路径规划的影响,以燃油、时间窗、司机等综合成本最低为目标,建立了考虑城市道路分级与动态交通路网的动态车辆路径问题(DVRP-RD,Dynamic Vehicle Route Problem with Road Condition)的两阶段混合整数模型,改进了遗传算法对其进行求解.最后,以深圳市的南山区与宝安区的真实路网为例,模拟了不同规模的客户需求与3种不同的动态更新机制,实验结果表明该方案与模型可以有效的为物流企业降低城市物流配送成本、提高调度效率与改善服务质量.展开更多
针对带时间窗的多车型电动车辆路径问题(heterogeneous electric vehicle routing problem with time windows,HEVRPTW),综合考虑客户需求差异、车辆异构特性和充电约束等因素,构建以总行驶成本最小化为目标的混合整数规划模型,并提出...针对带时间窗的多车型电动车辆路径问题(heterogeneous electric vehicle routing problem with time windows,HEVRPTW),综合考虑客户需求差异、车辆异构特性和充电约束等因素,构建以总行驶成本最小化为目标的混合整数规划模型,并提出结合层次聚类机制的混合变邻域搜索算法(hybrid variable neighborhood search,HVNS)进行求解。该算法采用层次聚类机制对客户节点进行空间划分,并结合贪婪算法生成初始解;在局部搜索阶段,整合单点插入、两点交换、两段交换及2–opt等多种邻域操作算子,并引入充电站优化策略优化路径选择。基于标准测试案例通过与Gurobi求解器和遗传算法(genetic algorithm,GA)进行仿真对比实验,并对电池容量、充电时间、时间窗宽度、车辆数量等关键参数进行敏感性分析。结果表明:HVNS能在更短时间内获得与Gurobi相近的优质解,验证了模型的正确性及其在不同规模问题求解中的优越性能;与GA相比,HVNS在求解质量上实现了10%~20%的提升,同时在稳定性和收敛性方面更优;通过参数优化确定了最佳配置方案(电池容量为150 kWh、充电时间为45 min、时间窗宽度为90 min、车辆数量为8辆),实现了总行驶成本最小化与客户满意度最大化的平衡。研究结果验证了HVNS是求解HEVRPTW的有效方法,本研究为物流企业电动车辆路径优化提供了科学的决策支持工具。展开更多
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
文摘Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.
文摘The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
基金This project was funded by the National Natural Science Foundation of China(41871320,61872139)the Provincial and Municipal Joint Fund of Hunan Provincial Natural Science Foundation of China(2018JJ4052)+2 种基金Hunan Provincial Natural Science Foundation of China(2017JJ2081)the Key Project of Hunan Provincial Education Department(19A172)the Scientific Research Fund of Hunan Provincial Education Department(18K060).
文摘In the large-scale logistics distribution of single logistic center,the method based on traditional genetic algorithm is slow in evolution and easy to fall into the local optimal solution.Addressing at this issue,we propose a novel approach of exploring hybrid genetic algorithm based large-scale logistic distribution for BBG supermarket.We integrate greedy algorithm and hillclimbing algorithm into genetic algorithm.Greedy algorithm is applied to initialize the population,and then hill-climbing algorithm is used to optimize individuals in each generation after selection,crossover and mutation.Our approach is evaluated on the dataset of BBG Supermarket which is one of the top 10 supermarkets in China.Experimental results show that our method outperforms some other methods in the field.
基金Supported by the National Natural Science Foundation of China(No.51565036)。
文摘With the challenge of great growing of transport diversity for the automobile enterprises, the heterogeneous vehicle routing problem with multiple depots, multiple types of finished vehicles and multiple types of transport vehicles in finished vehicle logistics(HVRPMD) is modelled and solved. A multi-objective optimization model for HVRPMD is presented considering loading constraints to minimize the total cost and minimize the number of transport vehicles. Then a hybrid heuristic algorithm based on genetic algorithm and particle swarm optimization(GA-PSO) is developed. Moreover, a case study is used to evaluate the effectiveness of this algorithm. By comparing the GA-PSO algorithm with the traditional GA algorithm, the simulation results demonstrate the proposed GA-PSO algorithm is able to better support the HVRPMD problem in practice. Contributions of the paper are the modelling and solving of a complex HVRPMD in logistics industry.
文摘随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动态交通路网模型,量化了不同类型的城市道路对物流车辆调度与路径规划的影响,以燃油、时间窗、司机等综合成本最低为目标,建立了考虑城市道路分级与动态交通路网的动态车辆路径问题(DVRP-RD,Dynamic Vehicle Route Problem with Road Condition)的两阶段混合整数模型,改进了遗传算法对其进行求解.最后,以深圳市的南山区与宝安区的真实路网为例,模拟了不同规模的客户需求与3种不同的动态更新机制,实验结果表明该方案与模型可以有效的为物流企业降低城市物流配送成本、提高调度效率与改善服务质量.
文摘针对带时间窗的多车型电动车辆路径问题(heterogeneous electric vehicle routing problem with time windows,HEVRPTW),综合考虑客户需求差异、车辆异构特性和充电约束等因素,构建以总行驶成本最小化为目标的混合整数规划模型,并提出结合层次聚类机制的混合变邻域搜索算法(hybrid variable neighborhood search,HVNS)进行求解。该算法采用层次聚类机制对客户节点进行空间划分,并结合贪婪算法生成初始解;在局部搜索阶段,整合单点插入、两点交换、两段交换及2–opt等多种邻域操作算子,并引入充电站优化策略优化路径选择。基于标准测试案例通过与Gurobi求解器和遗传算法(genetic algorithm,GA)进行仿真对比实验,并对电池容量、充电时间、时间窗宽度、车辆数量等关键参数进行敏感性分析。结果表明:HVNS能在更短时间内获得与Gurobi相近的优质解,验证了模型的正确性及其在不同规模问题求解中的优越性能;与GA相比,HVNS在求解质量上实现了10%~20%的提升,同时在稳定性和收敛性方面更优;通过参数优化确定了最佳配置方案(电池容量为150 kWh、充电时间为45 min、时间窗宽度为90 min、车辆数量为8辆),实现了总行驶成本最小化与客户满意度最大化的平衡。研究结果验证了HVNS是求解HEVRPTW的有效方法,本研究为物流企业电动车辆路径优化提供了科学的决策支持工具。