期刊文献+
共找到1,163篇文章
< 1 2 59 >
每页显示 20 50 100
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
1
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
2
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
Optimization and Scheduling of Green Power System Consumption Based on Multi-Device Coordination and Multi-Objective Optimization
3
作者 Liang Tang Hongwei Wang +2 位作者 Xinyuan Zhu Jiying Liu Kaiyue Li 《Energy Engineering》 2025年第6期2257-2289,共33页
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of... The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels. 展开更多
关键词 multi-objective optimization scheduling model multi-objective particle swarm optimization algorithm consumption capacity of green power wind and solar curtailment coordinated optimization of multiple devices
在线阅读 下载PDF
Multi-stage and multi-objective optimization of anti-typhoon evacuation strategy for riser with new hang-off system
4
作者 Yan-Wei Li Xiu-Quan Liu +3 位作者 Peng-Ji Hu Xiao-Yu Hu Yuan-Jiang Chang Guo-Ming Chen 《Petroleum Science》 2025年第1期457-471,共15页
A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and metho... A new hang-off system has been proposed to improve the security of risers in hang-off modes during typhoons.However,efficient anti-typhoon evacuation strategies have not been investigated.Optimiza-tion model and method for the anti-typhoon evacuation strategies should be researched.Therefore,multi-objective functions are proposed based on operation time,evacuation speed stability,and steering stability.An evacuation path model and a dynamic model of risers with the new hang-off system are developed for design variables and constraints.A multi-objective optimization model with high-dimensional variables and complex constraints is established.Finally,a three-stage optimization method based on genetic algorithm,least square method,and the penalty function method is proposed to solve the multi-objective optimization model.Optimization results show that the operation time can be reduced through operation parameter optimization,especially evacuation heading optimization.The optimal anti-typhoon strategy is evacuation with all risers suspended along a variable path when the direction angle is large,while evacuation with all risers suspended along a straight path at another di-rection angle.Besides,the influencing factors on anti-typhoon evacuation strategies indicate that the proposed optimization model and method have strong applicability to working conditions and remarkable optimization effects. 展开更多
关键词 Anti-typhoon evacuation strategy RISER Multi-stage and multi-objective optimization Genetic algorithm Least square method
原文传递
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
5
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
Even Search in a Promising Region for Constrained Multi-Objective Optimization 被引量:3
6
作者 Fei Ming Wenyin Gong Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期474-486,共13页
In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However,... In recent years, a large number of approaches to constrained multi-objective optimization problems(CMOPs) have been proposed, focusing on developing tweaked strategies and techniques for handling constraints. However, an overly finetuned strategy or technique might overfit some problem types,resulting in a lack of versatility. In this article, we propose a generic search strategy that performs an even search in a promising region. The promising region, determined by obtained feasible non-dominated solutions, possesses two general properties.First, the constrained Pareto front(CPF) is included in the promising region. Second, as the number of feasible solutions increases or the convergence performance(i.e., approximation to the CPF) of these solutions improves, the promising region shrinks. Then we develop a new strategy named even search,which utilizes the non-dominated solutions to accelerate convergence and escape from local optima, and the feasible solutions under a constraint relaxation condition to exploit and detect feasible regions. Finally, a diversity measure is adopted to make sure that the individuals in the population evenly cover the valuable areas in the promising region. Experimental results on 45 instances from four benchmark test suites and 14 real-world CMOPs have demonstrated that searching evenly in the promising region can achieve competitive performance and excellent versatility compared to 11 most state-of-the-art methods tailored for CMOPs. 展开更多
关键词 Constrained multi-objective optimization even search evolutionary algorithms promising region real-world problems
在线阅读 下载PDF
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
7
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
在线阅读 下载PDF
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
8
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithm operator allocation maintenance station location
在线阅读 下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
9
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:30
10
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 Evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
11
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems 被引量:8
12
作者 Mohamed Hamdy Anh-Tuan Nguyen +1 位作者 Jan L.M. Hensen 侯恩哲 《建筑节能》 CAS 2016年第6期4-4,共1页
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav... Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model. 展开更多
关键词 multi-objective optimization algorithmS EXPERIMENTATION Building simulation Comparison
在线阅读 下载PDF
Modeling and multi-objective optimization of a gasoline engine using neural networks and evolutionary algorithms 被引量:7
13
作者 JoséD. MARTíNEZ-MORALES Elvia R. PALACIOS-HERNáNDEZ Gerardo A. VELáZQUEZ-CARRILLO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期657-670,共14页
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S... In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively. 展开更多
关键词 Engine calibration multi-objective optimization Neural networks Multiple objective particle swarm optimization(MOPSO) Nondominated sorting genetic algorithm II (NSGA-II)
原文传递
An Improved Cuckoo Search Algorithm for Multi-Objective Optimization 被引量:2
14
作者 TIAN Mingzheng HOU Kuolin +1 位作者 WANG Zhaowei WAN Zhongping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期289-294,共6页
The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are v... The recently proposed Cuckoo search algorithm is an evolutionary algorithm based on probability. It surpasses other algorithms in solving the multi-modal discontinuous and nonlinear problems. Searches made by it are very efficient because it adopts Levy flight to carry out random walks. This paper proposes an improved version of cuckoo search for multi-objective problems(IMOCS). Combined with nondominated sorting, crowding distance and Levy flights, elitism strategy is applied to improve the algorithm. Then numerical studies are conducted to compare the algorithm with DEMO and NSGA-II against some benchmark test functions. Result shows that our improved cuckoo search algorithm convergences rapidly and performs efficienly. 展开更多
关键词 multi-objective optimization evolutionary algorithm Cuckoo search Levy flight
原文传递
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
15
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
An Improved Immune Algorithm for Solving Path Optimization Problem in Deep Immune Learning of Gene Network 被引量:1
16
作者 Tao Gong Mengyuan Wang 《Journal of Computer and Communications》 2019年第12期166-174,共9页
In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the... In order to overcome some defects of the traditional immune algorithm, the immune algorithm was improved for solving a path optimization problem in deep immune learning of a gene network. Firstly, the diversity of the solution population was enhanced in the evolution process by improving the memory cell processing method. Moreover, effective gene information was dynamically extracted from the genes of the excellent antibodies to make good vaccines in the process of immune evolution. Worse antibodies were optimized by vaccinating these antibodies, and the convergence of the immune algorithm to the optimal solution was improved. Finally, the feasibility of the improved immune algorithm was verified in the experimental simulation for solving the classic NP problem in deep immune learning of the gene network. 展开更多
关键词 IMPROVED immune algorithm PATH optimization Memory Cell Processing VACCINE
在线阅读 下载PDF
A new artificial immune algorithm and its application for optimization problems 被引量:1
17
作者 于志刚 宋申民 段广仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第2期129-133,共5页
A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods ... A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization. 展开更多
关键词 artificial immune network optimization algorithm preventing premature convergence.
在线阅读 下载PDF
Estimation of Distribution Algorithm with Multivariate <i>T</i>-Copulas for Multi-Objective Optimization
18
作者 Ying Gao Lingxi Peng +2 位作者 Fufang Li Miao Liu Xiao Hu 《Intelligent Control and Automation》 2013年第1期63-69,共7页
Estimation of distribution algorithms are a class of evolutionary optimization algorithms based on probability distribution model. In this article, a Pareto-based multi-objective estimation of distribution algorithm w... Estimation of distribution algorithms are a class of evolutionary optimization algorithms based on probability distribution model. In this article, a Pareto-based multi-objective estimation of distribution algorithm with multivariate T-copulas is proposed. The algorithm employs Pareto-based approach and multivariate T-copulas to construct probability distribution model. To estimate joint distribution of the selected solutions, the correlation matrix of T-copula is firstly estimated by estimating Kendall’s tau and using the relationship of Kendall’s tau and correlation matrix. After the correlation matrix is estimated, the degree of freedom of T-copula is estimated by using the maximum likelihood method. Afterwards, the Monte Carte simulation is used to generate new individuals. An archive with maximum capacity is used to maintain the non-dominated solutions. The Pareto optimal solutions are selected from the archive on the basis of the diversity of the solutions, and the crowding-distance measure is used for the diversity measurement. The archive gets updated with the inclusion of the non-dominated solutions from the combined population and current archive, and the archive which exceeds the maximum capacity is cut using the diversity consideration. The proposed algorithm is applied to some well-known benchmark. The relative experimental results show that the algorithm has better performance and is effective. 展开更多
关键词 Estimation of Distribution algorithm Pareto-Based Approach T-Copulas multi-objective optimization
暂未订购
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
19
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 Large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
Optimizing neural network forecast by immune algorithm 被引量:2
20
作者 杨淑霞 李翔 +1 位作者 李宁 杨尚东 《Journal of Central South University of Technology》 EI 2006年第5期573-576,共4页
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat... Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast. 展开更多
关键词 neural network FORECAST immune algorithm optimization
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部