The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielec...The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielectric loss.However,the validity of this proposition at high frequencies remains uncertain.To scrutinize the correlation between chain flexibility and dielectric properties,we synthesized six poly(ester imide)s(PEIs)with systematically varied molecular chain flexibilities by modifying the ester's substitution on the aromatic ring.The introduction of ester bonds bestowed all PEI films with a low dielectric dissipation factor(D_(f)),ranging from 0.0021 to 0.0038 at 10 GHz in dry conditions.The dry D_(f)displayed a pattern consistent with volume polarizability(P/V).Unexpectedly,PI-mmm-T,featu ring the most flexible molecular chain,exhibited the lowest dielectric loss under both dry(0.0021@10 GHz)and hygroscopic(0.0029@10 GHz)conditions.Furthermore,the observed increase in D_(f)after humidity absorption suggests that the high dielectric loss of PEI in applications may be attributed to its hygroscopic nature.Molecular simulations and characterization of the aggregation structure revealed that the smaller cavities within flexible molecular chains,after close stacking,impede the entry of water molecules.Despite sacrificing high-temperature resistance,the precursor exhibited enhanced solubility properties and could be processed into high-quality films.Our research unveils new insights into the relationship between flexibility and highfrequency dielectric loss,offering innovative perspectives on synthesizing aromatic polymers with exceptional dielectric properties.展开更多
Three novel poly(ether imide)s were synthesized by one-step solution polymerization from 2-(3, 4-dicarboxyl-N-phenyl)-4-(3, 4-dicarboxyl-phenoxyl-4-(2-methyl)-phenyl)-2, 3- phthal-azin-1-one dianhydride and three amin...Three novel poly(ether imide)s were synthesized by one-step solution polymerization from 2-(3, 4-dicarboxyl-N-phenyl)-4-(3, 4-dicarboxyl-phenoxyl-4-(2-methyl)-phenyl)-2, 3- phthal-azin-1-one dianhydride and three amines, and characterized. The polymers show good solubility and thermal properties.展开更多
The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a s...The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.展开更多
A novel poly(ether imide)s containing phthalazinone and isopropyl moieties derived from 2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl]-phthalazin-1-one and bisphenol-A diphthalic anhydride was synthesized by one-step ...A novel poly(ether imide)s containing phthalazinone and isopropyl moieties derived from 2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl]-phthalazin-1-one and bisphenol-A diphthalic anhydride was synthesized by one-step solution condensation polymerization in nr-cresol. The polymer was characterized by FTIR, NMR, molecular weights, glass transition temperature, thermal degradation temperature and WAXD.展开更多
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N m...The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52303010)Key-Area Research and Development Program of Guangdong province(No.2019B010941001)+2 种基金Key Technology of Liquid Crystal Polymer Material for 5G/6G High Frequency Communication(No.JSGGZD20220822095201003)Songshan Lake Materials Laboratory(No.2021SLABFK01)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110143)。
文摘The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielectric loss.However,the validity of this proposition at high frequencies remains uncertain.To scrutinize the correlation between chain flexibility and dielectric properties,we synthesized six poly(ester imide)s(PEIs)with systematically varied molecular chain flexibilities by modifying the ester's substitution on the aromatic ring.The introduction of ester bonds bestowed all PEI films with a low dielectric dissipation factor(D_(f)),ranging from 0.0021 to 0.0038 at 10 GHz in dry conditions.The dry D_(f)displayed a pattern consistent with volume polarizability(P/V).Unexpectedly,PI-mmm-T,featu ring the most flexible molecular chain,exhibited the lowest dielectric loss under both dry(0.0021@10 GHz)and hygroscopic(0.0029@10 GHz)conditions.Furthermore,the observed increase in D_(f)after humidity absorption suggests that the high dielectric loss of PEI in applications may be attributed to its hygroscopic nature.Molecular simulations and characterization of the aggregation structure revealed that the smaller cavities within flexible molecular chains,after close stacking,impede the entry of water molecules.Despite sacrificing high-temperature resistance,the precursor exhibited enhanced solubility properties and could be processed into high-quality films.Our research unveils new insights into the relationship between flexibility and highfrequency dielectric loss,offering innovative perspectives on synthesizing aromatic polymers with exceptional dielectric properties.
基金This work was sponsored by the National Natural Science Foundation of China (No. 59473901).
文摘Three novel poly(ether imide)s were synthesized by one-step solution polymerization from 2-(3, 4-dicarboxyl-N-phenyl)-4-(3, 4-dicarboxyl-phenoxyl-4-(2-methyl)-phenyl)-2, 3- phthal-azin-1-one dianhydride and three amines, and characterized. The polymers show good solubility and thermal properties.
基金This work was supported by the Key Natural Science Foundation of Fujian Province (E0320003).
文摘The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.
文摘A novel poly(ether imide)s containing phthalazinone and isopropyl moieties derived from 2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl]-phthalazin-1-one and bisphenol-A diphthalic anhydride was synthesized by one-step solution condensation polymerization in nr-cresol. The polymer was characterized by FTIR, NMR, molecular weights, glass transition temperature, thermal degradation temperature and WAXD.
文摘The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.