期刊文献+
共找到7,501篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
1
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Initial serum electrolyte imbalances and mortality in patients with traumatic brain injury:a retrospective study 被引量:1
2
作者 Ahammed Mekkodathil Ayman El-Menyar +5 位作者 Talat Chughtai Ahmed Abdel-Aziz Bahey Ahmed Labib Shehatta Ali Ayyad Abdulnasser Alyafai Hassan Al-Thani 《World Journal of Emergency Medicine》 2025年第4期331-339,共9页
BACKGROUND:Electrolyte imbalance is common following traumatic brain injury(TBI)and can significantly impact patient outcomes.We aimed to explore the occurrence,patterns,and consequences of electrolyte imbalance in ad... BACKGROUND:Electrolyte imbalance is common following traumatic brain injury(TBI)and can significantly impact patient outcomes.We aimed to explore the occurrence,patterns,and consequences of electrolyte imbalance in adult patients with TBI.METHODS:A retrospective study was conducted from 2016 to 2021 at a level 1 trauma center among hospitalized TBI patients.On admission,the levels of serum electrolytes,including sodium,potassium,calcium,magnesium,and phosphate,were analyzed.Demographics,injury characteristics,and interventions were assessed.The primary outcome was the in-hospital mortality.Multivariate logistic regression analysis was performed to identify independent predictors of mortality in TBI patients.RESULTS:A total of 922 TBI patients were included in the analysis,of whom 902(98%)had electrolyte imbalance.The mean age of patients with electrolyte imbalance was 32.0±15.0 years.Most patients were males(94%).The most common electrolyte abnormalities were hypocalcemia,hypophosphatemia,and hypokalemia.The overall in-hospital mortality rate was 22%in the entire cohort.In multivariate logistic analysis,the predictors of mortality included age(odds ratio[OR]=1.029,95%confidence intervals[CI]:1.013-1.046,P<0.001),low GCS(OR=0.883,95%CI:0.816-0.956,P=0.002),high Injury Severity Score(ISS)scale(OR=1.051,95%CI:1.026-1.078,P<0.001),hypernatremia(OR=2.175,95%CI:1.196-3.955,P=0.011),hyperkalemia(OR=4.862,95%CI:1.222-19.347;P=0.025),low serum bicarbonate levels(OR=0.926,95%CI:0.868-0.988,P=0.020),high serum lactate levels(OR=1.128,95%CI:1.022-1.244,P=0.017),high glucose levels(OR=1.072,95%CI:1.014-1.133,P=0.015),a longer activated partial thromboplastin time(OR=1.054,95%CI:1.024-1.084,P<0.001)and higer international normalized ratio(INR)(OR=3.825,95%CI:1.592-9.188,P=0.003).CONCLUSION:Electrolyte imbalance is common in TBI patients,with the significant prevalence of hypocalcemia,hypophosphatemia,and hypokalemia.However,hypernatremia and hyperkalemia were associated with the risk of mortality,emphasizing the need for further research to comprehend electrolyte dynamics in TBI patients. 展开更多
关键词 Electrolyte imbalance Traumatic brain injury MORTALITY
暂未订购
Oversampling for class-imbalanced learning in credit risk assessment based on CVAE-WGAN-gp model
3
作者 Kaiming Wang Qing Yang 《中国科学技术大学学报》 北大核心 2025年第7期37-48,36,I0001,I0002,共15页
Credit risk assessment is a crucial task in bank risk management.By making lending decisions based on credit risk assessment results,banks can reduce the probability of non-performing loans.However,class imbalance in ... Credit risk assessment is a crucial task in bank risk management.By making lending decisions based on credit risk assessment results,banks can reduce the probability of non-performing loans.However,class imbalance in bank credit default datasets limits the predictive performance of traditional machine learning and deep learning models.To address this issue,this study employs the conditional variational autoencoder-Wasserstein generative adversarial network with gradient penalty(CVAE-WGAN-gp)model for oversampling,generating samples similar to the original default customer data to enhance model prediction performance.To evaluate the quality of the data generated by the CVAE-WGAN-gp model,we selected several bank loan datasets for experimentation.The experimental results demonstrate that using the CVAE-WGAN-gp model for oversampling can significantly improve the predictive performance in credit risk assessment problems. 展开更多
关键词 credit risk assessment class imbalance OVERSAMPLING conditional variational autoencoder(CVAE) generative adversarial network(GAN)
在线阅读 下载PDF
Innovative Machine Learning Approaches for Drinking Water Quality Classification:Addressing Data Imbalances with Custom SMOTE Sampling Strategy
4
作者 Borislava Toleva Ivan Ivanov Kalina Kitova 《Journal of Environmental & Earth Sciences》 2025年第3期262-273,共12页
This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability of ecosystems that directly influence biodiversity,human health,and the world economy.The predictabi... This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability of ecosystems that directly influence biodiversity,human health,and the world economy.The predictability of water quality thus plays a crucial role in managing our ecosystems to make informed decisions and,hence,proper environmental management.This study addresses these challenges by proposing an effective machine learning methodology applied to the“Water Quality”public dataset.The methodology has modeled the dataset suitable for providing prediction classification analysis with high values of the evaluating parameters such as accuracy,sensitivity,and specificity.The proposed methodology is based on two novel approaches:(a)the SMOTE method to deal with unbalanced data and(b)the skillfully involved classical machine learning models.This paper uses Random Forests,Decision Trees,XGBoost,and Support Vector Machines because they can handle large datasets,train models for handling skewed datasets,and provide high accuracy in water quality classification.A key contribution of this work is the use of custom sampling strategies within the SMOTE approach,which significantly enhanced performance metrics and improved class imbalance handling.The results demonstrate significant improvements in predictive performance,achieving the highest reported metrics:accuracy(98.92%vs.96.06%),sensitivity(98.3%vs.71.26%),and F1 score(98.37%vs.79.74%)using the XGBoost model.These improvements underscore the effectiveness of our custom SMOTE sampling strategies in addressing class imbalance.The findings contribute to environmental management by enabling ecology specialists to develop more accurate strategies for monitoring,assessing,and managing drinking water quality,ensuring better ecosystem and public health outcomes. 展开更多
关键词 Data Modeling Class imbalance SMOTE Machine Learning Classification Model Estimation Water Quality Dataset
在线阅读 下载PDF
Increase in global per capita cropland imbalance across countries from 1985 to 2022:A threat to achieving Sustainable Development Goals
5
作者 Tingting Zhao Xiao Zhang +3 位作者 Wendi Liu Jinqing Wang Zhehua Li Liangyun Liu 《Geography and Sustainability》 2025年第2期253-264,共12页
Sustainable Development Goal 2(SDG 2,zero hunger)highlights that global hunger and food insecurity have worsened since 2015,driven in part by growing imbalance.Addressing the challenge of achieving SDG 2 in the face o... Sustainable Development Goal 2(SDG 2,zero hunger)highlights that global hunger and food insecurity have worsened since 2015,driven in part by growing imbalance.Addressing the challenge of achieving SDG 2 in the face of rapid global population growth requires sustained attention to global and national cropland changes.Accurately quantifying the correlation between population and cropland area(i.e.,SDG 2.4.1 per capita cropland)and analyzing the trends of global cropland imbalance are essential for a comprehensive understanding of SDG 2.In this study,we utilized a new global 30 m land-cover dynamic dataset(GLC_FCS30D)to analyze cropland dynamics,quantify per capita cropland and its changes across various countries and levels of development.Our results indicate that the global cropland area expanded by 0.944 million km^(2)from 1985 to 2022,with an average expansion rate of 2.42×10^(4)km^(2)/yr.However,the global per capita cropland area decreased from 0.347 ha in 1985 to 0.217 ha in 2022,mainly due to a higher population increase of nearly 65%in the same period.In the context of globalization,cropland expansion and per capita cropland exhibited spatial imbalances globally,particularly in developing countries.Developing countries saw an increase in total cropland area by 7.09%but a significant decrease in per capita cropland area by 37.38%.From a temporal perspective,the global imbalance has been steadily increasing with the Gini index rising from 0.895 in 1985 to 0.909 in 2022.Consequently,this study reveals an increasing imbalance of global per capita cropland across various countries,which threatens the attainment of the targets of SDG 2. 展开更多
关键词 Sustainable Development Goals GLC_FCS30D Cropland changes Population imbalance
在线阅读 下载PDF
Distribution and imbalance of basic research funding in environmental chemistry in China
6
作者 Weiyi Wang Qian Liu +1 位作者 Guibin Jiang Qiankun Zhuang 《Journal of Environmental Sciences》 2025年第9期267-277,共11页
This study investigates the distribution and imbalances of research funding in the field of Environmental Chemistry,utilizing application and funding data fromthe National Natural Science Foundation of China(NSFC)over... This study investigates the distribution and imbalances of research funding in the field of Environmental Chemistry,utilizing application and funding data fromthe National Natural Science Foundation of China(NSFC)over the past decade.The findings reveal significant regional disparities,with Eastern regions receiving over 70%of the national funding,while the Northeast accounts for only 4%to 6.5%.Additionally,the analysis shows notable differences in funding allocation among various research institutions,with a substantial portion of funds concentrated in a few leading institutions,leading to inequities across different types and levels of organizations.The impact of applicant gender on funding disparities is relatively minor;although female applicants have a slightly lower funding rate,the concentration of funds is marginally higher among females.Furthermore,the study highlights that key projects and talent-oriented initiatives,due to their significant funding concentration,exacerbate the existing imbalances.Overall,this research provides valuable insights for optimizing funding policies and advocates for a more equitable distribution of resources in Environmental Chemistry research,addressing the identified disparities. 展开更多
关键词 Scientific fund National natural science foundation of China Environmental chemistry POLICY Regional imbalance
原文传递
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
7
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
全身骨骼三维建模成像系统检测脊柱矢状位失衡与膝关节参数的相关性 被引量:1
8
作者 周峰 符鹏飞 +3 位作者 钱宇帆 许平成 郭炯炯 张磊 《中国组织工程研究》 北大核心 2026年第3期596-603,共8页
背景:随着人们生活方式的变化和年龄增长,脊柱矢状位失衡成为一种常见的骨科问题,对膝关节和骨盆的功能产生显著影响。了解脊柱矢状位失衡的影响及其代偿机制,对于改善慢性疼痛的临床管理至关重要。目的:使用全身骨骼三维建模成像系统... 背景:随着人们生活方式的变化和年龄增长,脊柱矢状位失衡成为一种常见的骨科问题,对膝关节和骨盆的功能产生显著影响。了解脊柱矢状位失衡的影响及其代偿机制,对于改善慢性疼痛的临床管理至关重要。目的:使用全身骨骼三维建模成像系统评估脊柱-骨盆-下肢矢状位排列模式,分析脊柱矢状位失衡与膝关节参数的相关性,并探讨其代偿机制。方法:纳入2021-01-01/2023-12-31就诊于苏州大学附属第一医院骨科门诊的71例慢性下腰痛或髌股关节痛患者,采用全身骨骼三维建模成像系统进行放射学测量,确定骨盆倾斜角、骨盆入射角、腰椎前凸角、脊柱矢状轴、整体倾斜角、髋-膝-踝角、屈膝角股骨远端外侧角、胫骨近端内侧角。根据SRS-Schwab脊柱畸形分类按骨盆入射角与腰椎前凸角差值(PI-LL)将患者分为正常组(PI-LL<10°)、代偿组(PI-LL为10°-20°)和失代偿组(PI-LL>20°),检测各组间放射学参数的差异。对比各组患者美国膝关节协会评分和Oswestry功能障碍指数的差异。根据临床症状将患者分为慢性下腰痛组和无慢性下腰痛组、髌股关节痛组和无髌股关节痛组,分析放射学参数差异与临床症状的关系。结果与结论:①PI-LL<20°时,股骨远端外侧角和胫骨近端内侧角趋于稳定;当PI-LL>20°时,其与股骨远端外侧角和胫骨近端内侧角呈线性相关,随着PI-LL增大,股骨远端外侧角值增大、胫骨近端内侧角值减小;②与正常组相比,代偿组骨盆倾斜角明显增大(P<0.01),髋-膝-踝角和屈膝角无明显差异,失代偿组的骨盆倾斜角显著增大(P<0.01),髋-膝-踝角和屈膝角显著减小(P<0.01);与代偿组相比,失代偿组髋-膝-踝角显著减小(P<0.05),而骨盆倾斜角和屈膝角无明显差异;③与无髌股关节痛组相比,髌股关节痛患者腰椎前凸角、股骨远端外侧角、胫骨近端内侧角显著减小(P<0.05),PI-LL显著增大(P<0.05);④慢性下腰痛患者放射学参数与无慢性下腰痛患者均有显著差异(P<0.05);⑤与正常组相比,代偿组和失代偿组的美国膝关节协会评分显著下降、Oswestry功能障碍指数显著升高(P<0.05);与代偿组相比,失代偿组美国膝关节协会评分显著下降、Oswestry功能障碍指数显著升高(P<0.05);⑥PI-LL随着年龄增加而变大,女性PI-LL相比男性较高;⑦提示脊柱与下肢在疾病进展和临床症状中具有重要作用;髌股关节痛和慢性下腰痛与脊柱-骨盆-下肢排列稳定有关;此外,高龄和女性患者的脊柱矢状位失衡较为严重。 展开更多
关键词 全身骨骼三维建模成像系统 膝关节参数 脊柱矢状位失衡 慢性下腰痛 髌股关节痛
暂未订购
火针温通法、苍耳子酊与复方甘草酸苷联合应用对白癜风患者皮损及Th17/Treg免疫失衡的影响
9
作者 刘可 朱红柳 +1 位作者 毛秋霞 高以红 《中国美容医学》 2026年第2期93-97,共5页
目的:研究火针温通法、苍耳子酊与复方甘草酸苷联合应用对白癜风患者皮损及Th17/Treg免疫失衡的影响。方法:选取2023年12月1日-2024年4月30日于笔者医院就诊的符合研究条件的70例白癜风患者,以随机数字表法随机分为对照组和观察组,各35... 目的:研究火针温通法、苍耳子酊与复方甘草酸苷联合应用对白癜风患者皮损及Th17/Treg免疫失衡的影响。方法:选取2023年12月1日-2024年4月30日于笔者医院就诊的符合研究条件的70例白癜风患者,以随机数字表法随机分为对照组和观察组,各35例。对照组采用苍耳子酊与复方甘草酸苷治疗,观察组在对照组基础上采用火针温通法进行联合治疗。治疗过程持续12周。比较两组皮损情况[白癜风面积评分指数(VASI)、皮损色素积分]、免疫炎症相关指标[辅助性T细胞17(Th17)、调节性T细胞(Treg)、Th17/Treg和干扰素-γ(IFN-γ)、白介素-17(IL-17)]、氧化应激指标[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、血红素氧合酶-1(HO-1)];统计两组患者不良反应发生率和复发率。结果:治疗后,观察组VASI下降且低于对照组,皮损色素积分升高且高于对照组(P<0.05);两组Th17细胞含量、IFN-γ和IL-17治疗后下降,Treg细胞含量上升,观察组变化幅度高于对照组(P<0.05);观察组SOD、CAT和HO-1水平治疗后高于对照组(P<0.05)。观察组不良反应发生率和复发率与对照组差异无统计学意义(P>0.05)。结论:火针温通法协同苍耳子酊外用,同时口服复方甘草酸苷可显著减少白癜风患者皮损面积,降低免疫反应和活性氧对色素细胞损伤。 展开更多
关键词 白癜风 复方甘草酸苷 火针温通法 苍耳子酊 免疫失衡
暂未订购
Model Development and Adaptive Imbalance Vibration Control of Magnetic Suspended System 被引量:10
10
作者 汤亮 陈义庆 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期434-442,共9页
A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly... A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated. 展开更多
关键词 SATELLITE single-gimbal control moment gyro imbalance active magnetic bearing JITTER
在线阅读 下载PDF
基于动作捕捉技术分析神经根型颈椎病患者的颈椎运动特征
11
作者 李智斐 韩斌 +4 位作者 柳秋丽 张展鸣 韦浩凯 左匡时 张翼升 《中国组织工程研究》 北大核心 2026年第9期2286-2293,共8页
背景:动作捕捉技术能够全方位、精准地剖析颈椎三维立体结构角度,并获取精确的数据,有助于深入了解神经根型颈椎病患者的颈椎运动特征,对于指导神经根型颈椎病的预防、辅助神经根型颈椎病诊断、制定个性化治疗方案以及指导康复训练具有... 背景:动作捕捉技术能够全方位、精准地剖析颈椎三维立体结构角度,并获取精确的数据,有助于深入了解神经根型颈椎病患者的颈椎运动特征,对于指导神经根型颈椎病的预防、辅助神经根型颈椎病诊断、制定个性化治疗方案以及指导康复训练具有至关重要的意义。目的:通过动作捕捉技术来探讨神经根型颈椎病患者的颈椎运动特征,揭示神经根型颈椎病的发病机制。方法:选择2023-10-01/2024-03-01在广西中医药大学第一附属医院骨科门诊就诊的神经根型颈椎病患者5例,为神经根型颈椎病组;健康人群5例,为健康对照组,记录所有研究对象的性别、年龄、头围、体质量指数。通过惯性测量单元磁场传感器捕捉研究对象颈部前屈、后伸、左屈、右屈、左旋、右旋6个自由度动作时角度变化过程(轨迹)及运动范围。结果与结论:①神经根型颈椎病组患者在颈椎前屈运动时C2-C7相对角度变化明显小于健康对照组(P<0.01);神经根型颈椎病组患者颈部运动误差范围在右旋时显著大于健康对照组(P<0.01);神经根型颈椎病组患者在做颈椎前屈运动时,屈曲到最大范围的时间要比恢复到正常体位的时间长(P<0.01);②神经根型颈椎病组患者在颈椎前屈、右旋运动时颈部运动范围明显小于健康对照组(P<0.001)。结果表明:神经根型颈椎病患者在颈椎运动时患侧肌肉及神经出现退变,肌肉肌力及协调能力降低,同时健侧肌肉及神经会代偿患侧的不足而出现控制过度的现象,与“筋骨失衡”的理念一致。 展开更多
关键词 神经根型颈椎病 颈椎运动 动作捕捉 惯性传感器 筋骨失衡 工程化组织构建
暂未订购
中国式现代化发展大趋势——基于地区人均GDP变迁视角(2001—2035年)
12
作者 胡鞍钢 《北京工业大学学报(社会科学版)》 北大核心 2026年第1期1-12,共12页
地区发展不平衡性始终是中国国情基本特征之一。中国是世界上自然地理、人口资源、经济社会差异最大的国家之一。进入21世纪,按购买力平价(PPP)人均GDP(2021年国际元)计算,全国31个省区市经济发展水平及格局发生重大变化:从2001年的“... 地区发展不平衡性始终是中国国情基本特征之一。中国是世界上自然地理、人口资源、经济社会差异最大的国家之一。进入21世纪,按购买力平价(PPP)人均GDP(2021年国际元)计算,全国31个省区市经济发展水平及格局发生重大变化:从2001年的“一个中国、四个世界(低收入、下中等收入、上中等收入、高收入)”,到2010年为“一个中国、三个世界(下中等收入、上中等收入、高收入)”,再到2024年为“一个中国、两个世界(上中等收入、高收入)”。预计到2030年基本上是“一个中国、一个世界”,即均达到高收入水平。预计到2035年,全国31个省区市人均GDP均达到OECD国家底线以上,成为世界最大人口规模的中等发达国家,如期基本实现社会主义现代化。 展开更多
关键词 中国式现代化 地区发展不平衡 人均GDP 中等收入群体 中等发达国家水平
在线阅读 下载PDF
High-performance channel estimation and compensation scheme for OFDMreceivers with IQ imbalances 被引量:1
13
作者 束锋 童娟娟 +3 位作者 李隽 王进 顾晨 陆锦辉 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期416-421,共6页
A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the recei... A pilot pattern across two orthogonal frequency division multiplexing OFDM symbols with a special structure is designed for the channel estimation of OFDM systems with inphase and quadrature IQ imbalances at the receiver.A high-efficiency time-domain TD least square LS channel estimator and a low-complexity frequency-domain Gaussian elimination GE equalizer are proposed to eliminate IQ distortion.The former estimator can significantly suppress channel noise by a factor N/L+1 over the existing frequency-domain FD LS where N and L+1 are the total number of subcarriers and the length of cyclic prefix and the proposed GE requires only 2N complex multiplications per OFDM symbol.Simulation results show that by exploiting the TD property of the channel the proposed TD-LS channel estimator obtains a significant signal-to-noise ratio gain over the existing FD-LS one whereas the proposed low-complexity GE compensation achieves the same bit error rate BER performance as the existing LS one. 展开更多
关键词 inphase and quadrature IQ imbalance equalizer channel estimation time domain frequency domain least square
在线阅读 下载PDF
An Analysis of Public Service Structural Imbalances in Rural China 被引量:2
14
作者 林万龙 《China Economist》 2008年第2期95-107,共13页
Rectifying the structural imbalance between the provision of and demand for rural public services can effectively boost the efficiency of public funds utilization and the level of public service provision. Based on th... Rectifying the structural imbalance between the provision of and demand for rural public services can effectively boost the efficiency of public funds utilization and the level of public service provision. Based on the findings of a field survey, this article presents a summary of the structural imbalance between the provision of and demand for rural public services. This paper holds that the structural imbalance is primarily reflected in the dislocation between provision and demand, the unsuitable mode of provision, the monolithic provision mechanism, the excessive focus on construction at the expense of governance and the overemphasis of counties and townships at the cost of villages. Such structural imbalance is principally because of the limited financial strength of government at the grass-roots level due to treasury centralization and the over-dependence of public services on special funds allocated by government at or above provincial level. 展开更多
关键词 RURAL PUBLIC SERVICES PUBLIC GOODS Structural imbalance.
在线阅读 下载PDF
基于长尾词分布的藏汉机器翻译数据增强方法
15
作者 格桑加措 尼玛扎西 +5 位作者 群诺 嘎玛扎西 道吉扎西 罗桑益西 拉毛吉 钱木吉 《计算机科学》 北大核心 2026年第1期224-230,共7页
现有藏汉机器翻译语料中存在领域数据分布不平衡的问题,导致训练出来的模型对各个领域数据的翻译能力表现不均衡。反向翻译作为一种常见的数据增强方法,通过提供更多样化的伪数据来提高模型的性能。然而,传统的反向翻译方法难以充分考... 现有藏汉机器翻译语料中存在领域数据分布不平衡的问题,导致训练出来的模型对各个领域数据的翻译能力表现不均衡。反向翻译作为一种常见的数据增强方法,通过提供更多样化的伪数据来提高模型的性能。然而,传统的反向翻译方法难以充分考虑数据的领域分布不平衡问题,导致模型在整体性能提升过程中难以提升资源稀缺领域的翻译性能。对此,通过深入分析语料中的长尾词的分布,有针对性地利用现有藏汉双语语料的长尾词来选取单语数据,通过反向翻译构造伪数据进行数据增强操作。这一策略旨在提升藏汉机器翻译模型整体性能的同时,改善数据匮乏领域的翻译性能。实验结果表明,通过充分考虑领域数据不平衡情况,结合长尾词数据增强,能够有效提升机器翻译模型在稀缺领域的翻译性能,为解决领域数据不平衡问题提供了一种有针对性的策略。 展开更多
关键词 长尾词 数据增强 藏汉机器翻译 领域数据不平衡
在线阅读 下载PDF
基于深度学习的野生动物图像识别方法与挑战
16
作者 李尧迪 田野 +3 位作者 张长春 谢将剑 赵海涛 张军国 《林业科学》 北大核心 2026年第1期207-222,共16页
随着野生动物保护和生态监测需求的不断增长,基于深度学习的图像识别方法在野生动物研究中的应用日益广泛。本研究首先介绍野生动物常用公开数据集,随后详细综述不同深度学习技术在野生动物图像识别中的应用,依据任务需求将识别方法划... 随着野生动物保护和生态监测需求的不断增长,基于深度学习的图像识别方法在野生动物研究中的应用日益广泛。本研究首先介绍野生动物常用公开数据集,随后详细综述不同深度学习技术在野生动物图像识别中的应用,依据任务需求将识别方法划分为图像级、对象级和像素级3个层级,并重点讨论各层级方法的具体实现及其技术细节。在此基础上,深入探讨野生动物图像识别所面临的核心挑战,涵盖数据层面的诸多问题,如数据质量参差不齐、标注代价高昂且效率低下、样本分布不均衡;同时还从模型与算法角度剖析若干关键技术难题,包括细粒度检测、跨域分布偏移、类增量学习、零样本学习和跨模态学习等。针对上述挑战,总结当前的研究进展与应对策略,并提出未来可能的发展方向,旨在为构建高效、鲁棒且适用于实际监测场景的野生动物智能识别系统提供理论支持和方法参考。 展开更多
关键词 野生动物图像识别 深度学习 数据不平衡 迁移学习 零样本学习 跨模态学习
在线阅读 下载PDF
Detecting Power Imbalance in Multi-Cylinder Inline Diesel Engine Genset
17
作者 S.H.Gawande L.G.Navale +2 位作者 M.R.Nandgaonkar D.S.Butala S.Kunamalla 《Journal of Electronic Science and Technology》 CAS 2010年第3期273-279,共7页
A model of fuel injection adjustment for balancing the 4-stroke six cylinder diesel engine coupling geneset is developed by detecting imbalance in operating engine by the frequency analysis of the crankshaft's speed ... A model of fuel injection adjustment for balancing the 4-stroke six cylinder diesel engine coupling geneset is developed by detecting imbalance in operating engine by the frequency analysis of the crankshaft's speed variation. In this work, the crankshaft is considered to be a rigid body, so that the variation of its angular speed could be directly correlated to the total gas-pressure torque. By analyzing only the lower harmonic orders, the speed variation spectrum can filter out the distortions produced by the dynamic response of the crankshaft. The information carried by these harmonic orders permits to establish correlations between measurements and the average gas pressure torque of the engine, and to detect imbalance and identify faulty cylinders. Detailed experimental reading are taken on diesel engine coupling genset on the test bed of Greaves Cotton Ltd Pane, India. 展开更多
关键词 Diesel engine FREQUENCY harmonic orders imbalance.
在线阅读 下载PDF
基于双侧肢体控制策略视角分析肢体间不对称对运动能力的影响
18
作者 金智勇 汪宇峰 +2 位作者 赵滨杰 熊敏全 严力 《中国组织工程研究》 北大核心 2026年第4期949-963,共15页
背景:肢体间不对称是人类生长发育过程中的一般现象,长期专项训练可使运动员肢体间不对称发生特异性适应。目的:回顾了体育运动中肢体间不对称的形成原因、表现形式及对运动能力的影响,并概述了相关评估方法及干预策略。方法:检索中国... 背景:肢体间不对称是人类生长发育过程中的一般现象,长期专项训练可使运动员肢体间不对称发生特异性适应。目的:回顾了体育运动中肢体间不对称的形成原因、表现形式及对运动能力的影响,并概述了相关评估方法及干预策略。方法:检索中国知网、万方、PubMed及Web of Science数据库建库至2024年9月间收录的文献,中文检索词为“不对称,对称,失衡,平衡,力量,爆发力,跳跃,跑,人体测量学,运动损伤,运动能力,运动表现”,英文检索词为“asymmetry,asymmetries,asymmetric,asymmetrical,imbalance,strength,power,force,jump,sprint,athletic performance,anthropometry,injury”。排除重复发表、内容不相关及会议文献后,最终纳入131篇文献进行分析。结果与结论:(1)肢体间不对称可受遗传、任务、训练、损伤、疲劳和肢体偏好等因素影响,主要表现为解剖结构、力量表现、专项任务不对称等形式;(2)肢体间不对称增大可导致双侧同相位对称类运动能力受损,但与双侧异相位对称类运动能力间关系尚不明确;(3)训练干预可有效改善肢体间不对称,且单侧训练效果优于双侧,训练方式和内容选择应符合专项需求;(4)为进一步厘清肢体间不对称与运动能力间的关系,建议未来研究秉承肢体间不对称的“任务特异性”理念,规范研究设计,选择敏感测试手段与指标,统一计算方式以提供更多的高质量证据,并分类制定不同专项肢体间不对称的预警阈值标准。 展开更多
关键词 双侧肢体 失衡 差异 力量 运动表现 爆发力 跳跃 神经肌肉 工程化组织构建
在线阅读 下载PDF
Ponzi Scheme Detection for Smart Contracts Based on Oversampling
19
作者 Yafei Liu Yuling Chen +2 位作者 Xuewei Wang Yuxiang Yang Chaoyue Tan 《Computers, Materials & Continua》 2026年第1期1065-1085,共21页
As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security ... As blockchain technology rapidly evolves,smart contracts have seen widespread adoption in financial transactions and beyond.However,the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems.Although numerous detection techniques have been proposed,existing methods suffer from significant limitations,such as class imbalance and insufficient modeling of transaction-related semantic features.To address these challenges,this paper proposes an oversampling-based detection framework for Ponzi smart contracts.We enhance the Adaptive Synthetic Sampling(ADASYN)algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions.This enhancement facilitates the generation of high-quality minority class samples and effectively mitigates class imbalance.In addition,we design a Contract Transaction Graph(CTG)construction algorithm to preserve key transactional semantics through feature extraction from contract code.A graph neural network(GNN)is then applied for classification.This study employs a publicly available dataset from the XBlock platform,consisting of 318 verified Ponzi contracts and 6498 benign contracts.Sourced from real Ethereum deployments,the dataset reflects diverse application scenarios and captures the varied characteristics of Ponzi schemes.Experimental results demonstrate that our approach achieves an accuracy of 96%,a recall of 92%,and an F1-score of 94%in detecting Ponzi contracts,outperforming state-of-the-art methods. 展开更多
关键词 Blockchain smart contracts Ponzi schemes class imbalance graph structure construction
在线阅读 下载PDF
A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection
20
作者 Zheng Zhang Jie Hao +2 位作者 Liquan Chen Tianhao Hou Yanan Liu 《Computers, Materials & Continua》 2026年第1期1119-1140,共22页
With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion det... With the increasing severity of network security threats,Network Intrusion Detection(NID)has become a key technology to ensure network security.To address the problem of low detection rate of traditional intrusion detection models,this paper proposes a Dual-Attention model for NID,which combines Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM)to design two modules:the FocusConV and the TempoNet module.The FocusConV module,which automatically adjusts and weights CNN extracted local features,focuses on local features that are more important for intrusion detection.The TempoNet module focuses on global information,identifies more important features in time steps or sequences,and filters and weights the information globally to further improve the accuracy and robustness of NID.Meanwhile,in order to solve the class imbalance problem in the dataset,the EQL v2 method is used to compute the class weights of each class and to use them in the loss computation,which optimizes the performance of the model on the class imbalance problem.Extensive experiments were conducted on the NSL-KDD,UNSW-NB15,and CIC-DDos2019 datasets,achieving average accuracy rates of 99.66%,87.47%,and 99.39%,respectively,demonstrating excellent detection accuracy and robustness.The model also improves the detection performance of minority classes in the datasets.On the UNSW-NB15 dataset,the detection rates for Analysis,Exploits,and Shellcode attacks increased by 7%,7%,and 10%,respectively,demonstrating the Dual-Attention CNN-BiLSTM model’s excellent performance in NID. 展开更多
关键词 Network intrusion detection class imbalance problem deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部