Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses...Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses present promising candidates for achieving this functionality.However,current multiplexing meta-lenses lack spectral modulation,and crosstalk between different wavelengths hampers the imaging quality,especilly for biological samples requiring precise wavelength specificity.Here,we experimentally demonstrate the nonlocal Huygens'meta-lens for high-quality-factor spin-multiplexing imaging.Quasi-bound states in the continuum(q-BlCs)are excited to provide a high quality factor of 90 and incident-angle dependence.The generalized Kerker condition,driven by Fano-like interactions between q-BIC and in-plane Mie resonances,breaks the radiation symmetry,resulting in a transmission peak with a geometric phase for polarization-converted light,while unconverted light exhibits a transmission dip without a geometric phase.Enhanced polarization conversion efficiency of 65%is achieved,accompanied by a minimal unconverted value,surpassing the theoretical limit of traditional thin nonlocal metasurfaces.Leveraging these effects,the output polarization-converted state exhibits an efficient wavelengthselective focusing phase profle.The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion,passing high-frequency edge details.Bright-field imaging and edge detection are thus presented under two output spin states.This work provides a versatile framework for nonlocal metasurfaces,boosting biomedical imaging and sensing applications.展开更多
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.AoE/P-502/20,CRF Project:C5031-22G,GRF Project:CityU15303521,CityU11305223,CityU11300224]City University of Hong Kong[Project No.9380131 and 7005867]+3 种基金National Natural Science Foundation of China[Grant No.62375232]S.X.acknowledges financial support from National Natural Science Foundation of China(Grant Nos.62125501,and 6233000076)Fundamental Research Funds for the Central Universities(Grant No.2022FRRK030004)Shenzhen Fundamental Research Projects(Grant Nos.JCYJ20220818102218040).
文摘Combining bright-feld and edge-enhanced imaging affords an effective avenue for extracting complex morphological information from objects,which is particularly beneficial for biological imaging.Multiplexing metalenses present promising candidates for achieving this functionality.However,current multiplexing meta-lenses lack spectral modulation,and crosstalk between different wavelengths hampers the imaging quality,especilly for biological samples requiring precise wavelength specificity.Here,we experimentally demonstrate the nonlocal Huygens'meta-lens for high-quality-factor spin-multiplexing imaging.Quasi-bound states in the continuum(q-BlCs)are excited to provide a high quality factor of 90 and incident-angle dependence.The generalized Kerker condition,driven by Fano-like interactions between q-BIC and in-plane Mie resonances,breaks the radiation symmetry,resulting in a transmission peak with a geometric phase for polarization-converted light,while unconverted light exhibits a transmission dip without a geometric phase.Enhanced polarization conversion efficiency of 65%is achieved,accompanied by a minimal unconverted value,surpassing the theoretical limit of traditional thin nonlocal metasurfaces.Leveraging these effects,the output polarization-converted state exhibits an efficient wavelengthselective focusing phase profle.The unconverted counterpart serves as an effective spatial frequency filter based on incident-angular dispersion,passing high-frequency edge details.Bright-field imaging and edge detection are thus presented under two output spin states.This work provides a versatile framework for nonlocal metasurfaces,boosting biomedical imaging and sensing applications.