期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution
1
作者 Bingzhi Lin Feng Xing +7 位作者 Liwei Su Kekuan Wang Yulan Liu Diming Zhang Xusan Yang Huijun Tan Zhijing Zhu Depeng Wang 《Light(Science & Applications)》 2025年第7期1851-1869,共19页
Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction... Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing,however,current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale.Considering the multiscale imaging capacity of light-field technique,a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging.Unfortunately,to our knowledge,no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale,mesoscale,and macroscale.To fill this gap,we present a real-time and universal network(RTU-Net)to reconstruct high-resolution light-field images at any scale.RTU-Net,as the first network that works over multiscale light-field image reconstruction,employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability.We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images,including microscale tubulin and mitochondrion dataset,mesoscale synthetic mouse neuro dataset,and macroscale light-field particle imaging velocimetry dataset.The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300μm×300μm×12μm to 25 mm×25 mm×25 mm,and demonstrated higher resolution when compared with recently reported light-field reconstruction networks.The high-resolution,strong robustness,high efficiency,and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging. 展开更多
关键词 fluid dynamics imagingthe deep learning life science imagingmesoscale neuroimagingand multiscale imaging real time reconstruction universal network network high resolution light field imaging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部