AIM:To evaluate the choroidopathy in patients with systemic lupus erythematosus(SLE)using enhanced depth imaging spectral domain optical coherence tomography(EDI SD-OCT)and optical coherence tomography angiography(OCT...AIM:To evaluate the choroidopathy in patients with systemic lupus erythematosus(SLE)using enhanced depth imaging spectral domain optical coherence tomography(EDI SD-OCT)and optical coherence tomography angiography(OCTA).METHODS:A total of 74 patients with SLE and 40 healthy volunteers were included in this cross-sectional study.SLE patients were further divided into three subgroups based on clinical and blood biochemistry findings.Ocular parameters obtained on ophthalmologic examination and optical imaging(EDI SD-OCT and OCTA)included the best corrected distance visual acuity(logMAR CDVA),subfoveal choroidal thickness(SCT),choroidal vascularity index(CVI)and vessel density(VD)of superficial capillary plexus(SCP)and deep capillary plexus(DCP).RESULTS:SLE patients had significantly lower values for CVI and VD of DCP(DVD)than control subjects.Amongst SLE patients,gender and chloroquine dose were found to be independent determinants of CVI while age predicted SCT.Steroid dose was a significant predictor for foveal VD of SCP(SVD),chloroquine dose for parafoveal SVD,gender for total DVD,and gender and steroid dose for perifoveal DVD.No correlation of logMAR CDVA and SCT was noted between SLE patients and control subjects.No correlation of SCT was noted with disease duration,Systemic Lupus Erythematosus Disease Activity Index(SLEDAI)score,hydroxychloroquine(HCQ)dose or steroid dose.No correlation of CVI was noted with patient age,disease duration,SLEDAI score,HCQ dose or steroid dose.No significant difference was noted between SLE subgroups in terms of any of the ocular parameters studied.CONCLUSION:The findings reveal the presence of ocular findings suggestive of early onset choroidopathy on EDI SD-OCT and OCTA in SLE patients,in the absence of ocular manifestations or active disease.展开更多
Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them...Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem ^(64) Cu-NOTAQD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellentimaging capability and more reliable diagnostic outcomes.By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform,as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.展开更多
Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging f...Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.展开更多
Ultrafast phenomena induced by femtosecond laser irradiation encompass a range of highly dynamic physical processes,including but not limited to electron excitation,material ablation,plasma generation,and shock wave p...Ultrafast phenomena induced by femtosecond laser irradiation encompass a range of highly dynamic physical processes,including but not limited to electron excitation,material ablation,plasma generation,and shock wave propagation.Unveiling the dynamics of these ultrafast processes is crucial for effectively controlling laser processing.However,many of these phenomena occur on timescales ranging from femtoseconds(fs) to nanoseconds(ns),which presents significant challenges in monitoring and interpretation;thus,ultrafast optical imaging techniques are often required.This paper comprehensively reviews the ultrafast optical imaging methods employed in recent years to monitor various ultrafast processes such as electron excitation,ultrafast ablation,plasma ejection,and shock wave propagation during femtosecond laser processing of metallic,composite,and ceramic materials.These methods can be categorized into two primary types:pump-probe ultrafast optical imaging and single-shot ultrafast optical imaging techniques.The working principles and key findings associated with each type of ultrafast optical imaging technique are described in detail.Finally,the imaging principles,advantages and disadvantages,and application scenarios of various ultrafast imaging technologies are summarized,along with a discussion of future challenges and development directions in this field.展开更多
Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following pro...Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.展开更多
A model based on Fourier domain consideration on aperture configuration of optical synthetic aperture imaging system is introduced in this paper. The derivation of the model is directly linked to the restoration error...A model based on Fourier domain consideration on aperture configuration of optical synthetic aperture imaging system is introduced in this paper. The derivation of the model is directly linked to the restoration error of the original object from the recorded image. The aperture configuration is a function of the maximum frequency of interest, and takes into account the diameter of the aperture. The simulative results of genetic algorithms illustrate the usefulness of this model lot designing a synthetic aperture optical imaging system, and the aperture configuration of a good synthetic aperture optical imaging system should be non-redundant.展开更多
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com...Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.展开更多
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan...Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.展开更多
AIM: To investigate the molecular or cellular mechanisms related to the infection of epithelial colonic mucosa by pks-positive Escherichia coli(E. coli) using optical imaging.METHODS: We choose to evaluate the tumor m...AIM: To investigate the molecular or cellular mechanisms related to the infection of epithelial colonic mucosa by pks-positive Escherichia coli(E. coli) using optical imaging.METHODS: We choose to evaluate the tumor metabolic activity using a fluorodeoxyglucose analogue as 2-deoxyglucosone fluorescent probes and to correlate it with tumoral volume(mm^3). Inflammation measuring myeloperoxidase(MPO) activity and reactive oxygen species production was monitored by a bioluminescent(BLI) inflammation probe and related to histological examination and MPO levels by enzyme-linked immunosorbent assay(ELISA) on tumor specimens. The detection and quantitation of these two signals were validated on a xenograft model of human colon adenocarcinoma epithelial cells(HCT116) in nude mice infected with a pks-positive E. coli. The inflammatory BLI signal was validated intra-digestively in the colitisCEABAC10 DSS models, which mimicked Crohn's disease. RESULTS: Using a 2-deoxyglucosone fluorescent probe, we observed a high and specific HCT116 tumor uptake in correlation with tumoral volume(P = 0.0036). Using the inflammation probe targeting MPO, we detected a rapid systemic elimination and a significant increase of the BLI signal in the pks-positive E. coli-infected HCT116 xenograft group(P < 0.005). ELISA confirmed that MPO levels were significantly higher(1556 ± 313.6 vs 234.6 ± 121.6 ng/m L P = 0.001) in xenografts infected with the pathogenic E. coli strain. Moreover, histological examination of tumor samples confirmed massive infiltration of pks-positive E. coli-infected HCT116 tumors by inflammatory cells compared to the uninfected group. These data showed that infection with the pathogenic E. coli strain enhanced inflammation and ROS production in tumors before tumor growth. Moreover, we demonstrated that the intra-digestive monitoring of inflammation is feasible in a reference colitis murine model(CEABAC10/DSS).CONCLUSION: Using BLI and fluorescence optical imaging, we provided tools to better understand hostpathogen interactions at the early stage of disease, such as inflammatory bowel disease and colorectal cancer.展开更多
AIM:To assess peripapillary retinal nerve fiber layer(RNFL)and choroidal thickness obtained with enhanced depth imaging(EDI)mode compared with those obtained without EDI mode using Heidelberg Spectralis optical c...AIM:To assess peripapillary retinal nerve fiber layer(RNFL)and choroidal thickness obtained with enhanced depth imaging(EDI)mode compared with those obtained without EDI mode using Heidelberg Spectralis optical coherence tomography(OCT).METHODS:Fifty eyes of 25 normal healthy subjects and32 eyes of 20 patients with different eye diseases were included in the study.All subjects underwent 3.4 mm diameter peripapillary circular OCT scan centered on the optic disc using both the conventional and the EDI OCT protocols.The visualization of RNFL and choroidoscleral junction was assessed using an ordinal scoring scale.The paired t-test,intraclass correlation coefficient(ICC),95%limits of agreement(LoA),and Bland and Altman plots were used to test the agreement of measurements.RESULTS:The visibility score of RNFL obtained with and without EDI was of no significant difference(P=0.532),the visualization of choroidoscleral junction was better using EDI protocol than conventional protocol(P〈0.001).Peripapillary RNFL thickness obtained with EDI was slightly thicker than that obtained without EDI(103.25±9.42μm vs 101.87±8.78μm,P=0.010).The ICC of the two protocols was excellent with the value of 0.867 to 0.924,the 95%LoA of global RNFL thickness was between-10.0 to 7.4μm.Peripapillary choroidal thickness obtained with EDI was slightly thinner than that obtained without EDI(147.23±51.04μm vs 150.90±51.84μm,P〈0.001).The ICC was also excellent with the value of 0.960 to 0.987,the 95%LoA of global choroidal thickness was between-12.5 to 19.8μm.CONCLUSION:Peripapillary circular OCT scan with or without EDI mode shows comparable results in the measurement of peripapillary RNFL and choroidal thickness.展开更多
The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons.Precise dissection of neural circuits at the mesoscopic level can provide important structural in...The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons.Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain.Optical approaches can achieve submicron lateral resolution and achieve“optical sectioning”by a variety of means,which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level.Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues.Combined with various fluorescent labeling techniques,whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells,circuits,and blood vessels.In this review,we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.展开更多
Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak corre...Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.展开更多
Recent years have seen the design and implementation of many optical activatable smart probes.These probes are activatable because they change their optical properties and are smart because they can identify specific ...Recent years have seen the design and implementation of many optical activatable smart probes.These probes are activatable because they change their optical properties and are smart because they can identify specific targets.This broad class of detection agents has allowed previously unperformed visualizations,facilitating the study of diverse biomolecules including enzymes,nucleic acids,ions and reactive oxygen species.Designed to be robust in an in vivo environment,these probes have been used in tissue culture cells and in live small animals.An emerging class of smart probes has been designed to harness the potency of singlet oxygen generating photosensitizers.Combining the discrimination of activatable agents with the toxicity of photosensitizers represents a new and powerful approach to disease treatment.This review highlights some applications of activatable smart probes with a focus on developments of the past decade.展开更多
Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Ce...Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.展开更多
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional...High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.展开更多
Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images o...Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.展开更多
Recording and identifying faint objects through atmospheric scattering media by an optical system are fundamentally interesting and technologically important.We introduce a comprehensive model that incorporates contri...Recording and identifying faint objects through atmospheric scattering media by an optical system are fundamentally interesting and technologically important.We introduce a comprehensive model that incorporates contributions from target characteristics,atmospheric effects,imaging systems,digital processing,and visual perception to assess the ultimate perceptible limit of geometrical imaging,specifically the angular resolution at the boundary of visible distance.The model allows us to reevaluate the effectiveness of conventional imaging recording,processing,and perception and to analyze the limiting factors that constrain image recognition capabilities in atmospheric media.The simulations were compared with the experimental results measured in a fog chamber and outdoor settings.The results reveal good general agreement between analysis and experiment,pointing out the way to harnessing the physical limit for optical imaging in scattering media.An immediate application of the study is the extension of the image range by an amount of 1.2 times with noise reduction via multiframe averaging,hence greatly enhancing the capability of optical imaging in the atmosphere.展开更多
AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was...AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was conducted in 20 eyes of 20 patients,the uninvolved eye served as a control.All the patients underwent clinical fundus photography,computed tomography,EDI SDOCT imaging before and after surgery.Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5;the remaining patients underwent tumor excision.Patients were followed 1 to 14mo following surgery(average follow up,5.8mo).RESULTS:Visual acuity prior to surgery ranged from 20/20 to 20/200.Following surgery,5 patients’visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10(range 4 to 26 letters).Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery.Following surgical excision,photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients.CONCLUSION:Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis.Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression.展开更多
AIM:To evaluate the peripapillary choroidal thickness(PPCT) in Chinese children,and to analyze the influencing factors.METHODS: PPCT was measured with enhanced depth imaging optical coherence tomography(EDI-OCT)...AIM:To evaluate the peripapillary choroidal thickness(PPCT) in Chinese children,and to analyze the influencing factors.METHODS: PPCT was measured with enhanced depth imaging optical coherence tomography(EDI-OCT) in 70children(53 myopes and 17 non-myopes) aged 7 to 18 y,with spherical equivalent refractive errors between 0.50and-5.87 diopters(D).Peripapillary choroidal imaging was performed using circular scans of a diameter of 3.4 mm around the optic disc.PPCT was measured by EDI-OCT in six sectors: nasal(N),superonasal(SN),superotemporal(ST),temporal(T),inferotemporal(IT)and inferonasal(IN),as well as global RNFL thickness(G).RESULTS: The mean global PPCT was 165.49±33.76 μm.The temporal,inferonasal,inferotemporal PPCT were significantly thinner than the nasal,superonasal,superotemporal segments PPCT were significantly thinner in the myopic group at temporal,superotemporal and inferotemporal segments.The axial length was significantly associated with the average global(β=-0.419,P =0.014),superonasal(β=-2.009,P=0.049) and inferonasal(β=-2.000,P=0.049) PPCT.The other factors(gender,age,SE) were not significantly associated with PPCT.CONCLUSION: PPCT was thinner in the myopic group at temporal,superotemporal and inferotemporal segments.The axial length was found to be negatively correlated to PPCT.We need more further studies about the relationship between PPCT and myopia.展开更多
Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells...Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.展开更多
文摘AIM:To evaluate the choroidopathy in patients with systemic lupus erythematosus(SLE)using enhanced depth imaging spectral domain optical coherence tomography(EDI SD-OCT)and optical coherence tomography angiography(OCTA).METHODS:A total of 74 patients with SLE and 40 healthy volunteers were included in this cross-sectional study.SLE patients were further divided into three subgroups based on clinical and blood biochemistry findings.Ocular parameters obtained on ophthalmologic examination and optical imaging(EDI SD-OCT and OCTA)included the best corrected distance visual acuity(logMAR CDVA),subfoveal choroidal thickness(SCT),choroidal vascularity index(CVI)and vessel density(VD)of superficial capillary plexus(SCP)and deep capillary plexus(DCP).RESULTS:SLE patients had significantly lower values for CVI and VD of DCP(DVD)than control subjects.Amongst SLE patients,gender and chloroquine dose were found to be independent determinants of CVI while age predicted SCT.Steroid dose was a significant predictor for foveal VD of SCP(SVD),chloroquine dose for parafoveal SVD,gender for total DVD,and gender and steroid dose for perifoveal DVD.No correlation of logMAR CDVA and SCT was noted between SLE patients and control subjects.No correlation of SCT was noted with disease duration,Systemic Lupus Erythematosus Disease Activity Index(SLEDAI)score,hydroxychloroquine(HCQ)dose or steroid dose.No correlation of CVI was noted with patient age,disease duration,SLEDAI score,HCQ dose or steroid dose.No significant difference was noted between SLE subgroups in terms of any of the ocular parameters studied.CONCLUSION:The findings reveal the presence of ocular findings suggestive of early onset choroidopathy on EDI SD-OCT and OCTA in SLE patients,in the absence of ocular manifestations or active disease.
基金supported,in part,by the University of Wisconsin–Madisonthe National Institutes of Health (P30CA014520 and T32CA009206)the American Cancer Society (125246-RSG-13-099-01-CCE)
文摘Silica nanoparticles have been one of the most promising nanosystems for biomedical applications due to their facile surface chemistry and non-toxic nature. However, it is still challenging to effectively deliver them into tumor sites and noninvasively visualize their in vivo biodistribution with excellent sensitivity and accuracy for effective cancer diagnosis. In this study, we design a yolk/shell-structured silica nanosystem ^(64) Cu-NOTAQD@HMSN-PEG-TRC105, which can be employed for tumor vasculature targeting and dual-modality PET/optical imaging, leading to superior targeting specificity, excellentimaging capability and more reliable diagnostic outcomes.By combining vasculature targeting, pH-sensitive drug delivery, and dual-modality imaging into a single platform,as-designed yolk/shell-structured silica nanosystems may be employed for the future image-guided tumor-targeted drug delivery, to further enable cancer theranostics.
文摘Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.
基金supported by the National Key R&D Program of China(No.2022YFB4601601)the Key R&D Program of Guangxi Province,China(No.GKAB23026101)+1 种基金the Base,Talent Special Project of the Guangxi Science and Technology Plan Project(No.Gui Ke AD23026149)Guangxi Natural Science Foundation,China(No.2023GXNSFBA026287)
文摘Ultrafast phenomena induced by femtosecond laser irradiation encompass a range of highly dynamic physical processes,including but not limited to electron excitation,material ablation,plasma generation,and shock wave propagation.Unveiling the dynamics of these ultrafast processes is crucial for effectively controlling laser processing.However,many of these phenomena occur on timescales ranging from femtoseconds(fs) to nanoseconds(ns),which presents significant challenges in monitoring and interpretation;thus,ultrafast optical imaging techniques are often required.This paper comprehensively reviews the ultrafast optical imaging methods employed in recent years to monitor various ultrafast processes such as electron excitation,ultrafast ablation,plasma ejection,and shock wave propagation during femtosecond laser processing of metallic,composite,and ceramic materials.These methods can be categorized into two primary types:pump-probe ultrafast optical imaging and single-shot ultrafast optical imaging techniques.The working principles and key findings associated with each type of ultrafast optical imaging technique are described in detail.Finally,the imaging principles,advantages and disadvantages,and application scenarios of various ultrafast imaging technologies are summarized,along with a discussion of future challenges and development directions in this field.
基金Project supported by the National Key R&D Program of China(Grant No.SKLA02020001A05)。
文摘Real-time polarization medium-wave infrared(MIR)optical imaging systems enable the acquisition of infrared and polarization information for a target.At present,real-time polarization MIR devices face the following problems:poor real-time performance,low transmission and high requirements for fabrication and integration.Herein,we aim to improve the performance of real-time polarization imaging systems in the MIR waveband and solve the above-mentioned defects.Therefore,we propose a MIR polarization imaging system to achieve real-time polarization-modulated imaging with high transmission as well as improved performance based on a pixel-wise metasurface micro-polarization array(PMMPA).The PMMPA element comprises several linear polarization(LP)filters with different polarization angles.The optimization results demonstrate that the transmittance of the center field of view for the LP filters is up to 77%at a wavelength of4.0μm and an extinction ratio of 88 d B.In addition,a near-diffraction-limited real-time MIR imaging optical system is designed with a field of view of 5°and an F-number of 2.The simulation results show that an MIR polarization imaging system with excellent real-time performance and high transmission is achieved by using the optimized PMMPA element.Therefore,the method is compatible with the available optical system design technologies and provides a way to realize real-time polarization imaging in MIR wavebands.
文摘A model based on Fourier domain consideration on aperture configuration of optical synthetic aperture imaging system is introduced in this paper. The derivation of the model is directly linked to the restoration error of the original object from the recorded image. The aperture configuration is a function of the maximum frequency of interest, and takes into account the diameter of the aperture. The simulative results of genetic algorithms illustrate the usefulness of this model lot designing a synthetic aperture optical imaging system, and the aperture configuration of a good synthetic aperture optical imaging system should be non-redundant.
文摘Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging.
基金Supported by the National Natural Science Foundation of China(NSFC 61501396)the Colleges and Universities under the Science and Technology Research Projects of Hebei Province(QN2015021)
文摘Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.
基金Supported by Veziant J was supported by«année-recherche»grants from the Ministère de la Santéand the Facultéde Médecine de Clermont-FerrandGagnière J was supported by a“Nuovo Soldati Foundation for Cancer Research”grant.
文摘AIM: To investigate the molecular or cellular mechanisms related to the infection of epithelial colonic mucosa by pks-positive Escherichia coli(E. coli) using optical imaging.METHODS: We choose to evaluate the tumor metabolic activity using a fluorodeoxyglucose analogue as 2-deoxyglucosone fluorescent probes and to correlate it with tumoral volume(mm^3). Inflammation measuring myeloperoxidase(MPO) activity and reactive oxygen species production was monitored by a bioluminescent(BLI) inflammation probe and related to histological examination and MPO levels by enzyme-linked immunosorbent assay(ELISA) on tumor specimens. The detection and quantitation of these two signals were validated on a xenograft model of human colon adenocarcinoma epithelial cells(HCT116) in nude mice infected with a pks-positive E. coli. The inflammatory BLI signal was validated intra-digestively in the colitisCEABAC10 DSS models, which mimicked Crohn's disease. RESULTS: Using a 2-deoxyglucosone fluorescent probe, we observed a high and specific HCT116 tumor uptake in correlation with tumoral volume(P = 0.0036). Using the inflammation probe targeting MPO, we detected a rapid systemic elimination and a significant increase of the BLI signal in the pks-positive E. coli-infected HCT116 xenograft group(P < 0.005). ELISA confirmed that MPO levels were significantly higher(1556 ± 313.6 vs 234.6 ± 121.6 ng/m L P = 0.001) in xenografts infected with the pathogenic E. coli strain. Moreover, histological examination of tumor samples confirmed massive infiltration of pks-positive E. coli-infected HCT116 tumors by inflammatory cells compared to the uninfected group. These data showed that infection with the pathogenic E. coli strain enhanced inflammation and ROS production in tumors before tumor growth. Moreover, we demonstrated that the intra-digestive monitoring of inflammation is feasible in a reference colitis murine model(CEABAC10/DSS).CONCLUSION: Using BLI and fluorescence optical imaging, we provided tools to better understand hostpathogen interactions at the early stage of disease, such as inflammatory bowel disease and colorectal cancer.
基金Supported by Wenzhou Municipal Science and Technology Bureau(No.Y20150257)
文摘AIM:To assess peripapillary retinal nerve fiber layer(RNFL)and choroidal thickness obtained with enhanced depth imaging(EDI)mode compared with those obtained without EDI mode using Heidelberg Spectralis optical coherence tomography(OCT).METHODS:Fifty eyes of 25 normal healthy subjects and32 eyes of 20 patients with different eye diseases were included in the study.All subjects underwent 3.4 mm diameter peripapillary circular OCT scan centered on the optic disc using both the conventional and the EDI OCT protocols.The visualization of RNFL and choroidoscleral junction was assessed using an ordinal scoring scale.The paired t-test,intraclass correlation coefficient(ICC),95%limits of agreement(LoA),and Bland and Altman plots were used to test the agreement of measurements.RESULTS:The visibility score of RNFL obtained with and without EDI was of no significant difference(P=0.532),the visualization of choroidoscleral junction was better using EDI protocol than conventional protocol(P〈0.001).Peripapillary RNFL thickness obtained with EDI was slightly thicker than that obtained without EDI(103.25±9.42μm vs 101.87±8.78μm,P=0.010).The ICC of the two protocols was excellent with the value of 0.867 to 0.924,the 95%LoA of global RNFL thickness was between-10.0 to 7.4μm.Peripapillary choroidal thickness obtained with EDI was slightly thinner than that obtained without EDI(147.23±51.04μm vs 150.90±51.84μm,P〈0.001).The ICC was also excellent with the value of 0.960 to 0.987,the 95%LoA of global choroidal thickness was between-12.5 to 19.8μm.CONCLUSION:Peripapillary circular OCT scan with or without EDI mode shows comparable results in the measurement of peripapillary RNFL and choroidal thickness.
基金supported by the STI2030-Major Projects(2021ZD0201001 and 2021ZD0201000)the National Natural Science Foundation of China(81827901 and 32192412).
文摘The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons.Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain.Optical approaches can achieve submicron lateral resolution and achieve“optical sectioning”by a variety of means,which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level.Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues.Combined with various fluorescent labeling techniques,whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells,circuits,and blood vessels.In this review,we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.
文摘Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness.
基金supported by Canadian Cancer Society Grant#018510 through the National Cancer Institute of Canada.
文摘Recent years have seen the design and implementation of many optical activatable smart probes.These probes are activatable because they change their optical properties and are smart because they can identify specific targets.This broad class of detection agents has allowed previously unperformed visualizations,facilitating the study of diverse biomolecules including enzymes,nucleic acids,ions and reactive oxygen species.Designed to be robust in an in vivo environment,these probes have been used in tissue culture cells and in live small animals.An emerging class of smart probes has been designed to harness the potency of singlet oxygen generating photosensitizers.Combining the discrimination of activatable agents with the toxicity of photosensitizers represents a new and powerful approach to disease treatment.This review highlights some applications of activatable smart probes with a focus on developments of the past decade.
文摘Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging(CLI), and optical imageguided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.
基金supported by National Natural Foundation of China(Grant No.61991454)the project of CAS Interdisciplinary Innovation Team。
文摘High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)
文摘Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.
基金supported by the National Natural Science Foundation of China(Grant Nos.61991452 and 12074444)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant Nos.2022YFA1404300 and 2020YFC2007102).
文摘Recording and identifying faint objects through atmospheric scattering media by an optical system are fundamentally interesting and technologically important.We introduce a comprehensive model that incorporates contributions from target characteristics,atmospheric effects,imaging systems,digital processing,and visual perception to assess the ultimate perceptible limit of geometrical imaging,specifically the angular resolution at the boundary of visible distance.The model allows us to reevaluate the effectiveness of conventional imaging recording,processing,and perception and to analyze the limiting factors that constrain image recognition capabilities in atmospheric media.The simulations were compared with the experimental results measured in a fog chamber and outdoor settings.The results reveal good general agreement between analysis and experiment,pointing out the way to harnessing the physical limit for optical imaging in scattering media.An immediate application of the study is the extension of the image range by an amount of 1.2 times with noise reduction via multiframe averaging,hence greatly enhancing the capability of optical imaging in the atmosphere.
基金Supported by National Natural Science Foundation of China(No.81300805)。
文摘AIM:To characterize spectral-domain optical coherence tomography(SD-OCT)features of chorioretinal folds in orbital mass imaged using enhanced depth imaging(EDI).METHODS:Prospective observational case-control study was conducted in 20 eyes of 20 patients,the uninvolved eye served as a control.All the patients underwent clinical fundus photography,computed tomography,EDI SDOCT imaging before and after surgery.Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5;the remaining patients underwent tumor excision.Patients were followed 1 to 14mo following surgery(average follow up,5.8mo).RESULTS:Visual acuity prior to surgery ranged from 20/20 to 20/200.Following surgery,5 patients’visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10(range 4 to 26 letters).Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery.Following surgical excision,photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients.CONCLUSION:Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis.Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression.
基金Supported by Major Scientific and Technological Projects in Zhejiang Province,China(No.2013c03048-3)the Science and Technology Plan Project of Wenzhou Science and Technology Bureau(No.Y20150284)Medical Scientific Research Foundation of Zhejiang Province(No.2016ZDA016)
文摘AIM:To evaluate the peripapillary choroidal thickness(PPCT) in Chinese children,and to analyze the influencing factors.METHODS: PPCT was measured with enhanced depth imaging optical coherence tomography(EDI-OCT) in 70children(53 myopes and 17 non-myopes) aged 7 to 18 y,with spherical equivalent refractive errors between 0.50and-5.87 diopters(D).Peripapillary choroidal imaging was performed using circular scans of a diameter of 3.4 mm around the optic disc.PPCT was measured by EDI-OCT in six sectors: nasal(N),superonasal(SN),superotemporal(ST),temporal(T),inferotemporal(IT)and inferonasal(IN),as well as global RNFL thickness(G).RESULTS: The mean global PPCT was 165.49±33.76 μm.The temporal,inferonasal,inferotemporal PPCT were significantly thinner than the nasal,superonasal,superotemporal segments PPCT were significantly thinner in the myopic group at temporal,superotemporal and inferotemporal segments.The axial length was significantly associated with the average global(β=-0.419,P =0.014),superonasal(β=-2.009,P=0.049) and inferonasal(β=-2.000,P=0.049) PPCT.The other factors(gender,age,SE) were not significantly associated with PPCT.CONCLUSION: PPCT was thinner in the myopic group at temporal,superotemporal and inferotemporal segments.The axial length was found to be negatively correlated to PPCT.We need more further studies about the relationship between PPCT and myopia.
基金supported by the National Science and Technology Innovation 2030 Grant No. (2021ZD0200104)National Nature Science Foundation of China (81871082).
文摘Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.