Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since...Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.展开更多
Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which t...Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.展开更多
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp...The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.展开更多
Adhesion molecule CD146 (100-130kDa) belongs to the immunoglobulin super family and it is originally identified as a biomarker for melanoma. Recently, CD146 is found as
Addressing challenges in accurately detecting persimmon fruit quality in orchards—such as reliance on manual grading,low efficiency,severe foliage obstruction,and subtle differences between quality grades—this paper...Addressing challenges in accurately detecting persimmon fruit quality in orchards—such as reliance on manual grading,low efficiency,severe foliage obstruction,and subtle differences between quality grades—this paper proposes a lightweight persimmon detection model based on an improved YOLOv8s architecture.First,the Conv layer in the backbone network is replaced with an ADown module to reduce model complexity.Second,MSFAN is introduced in the Neck layer to fully extract texture features from persimmon images,highlighting differences between quality grades.Finally,the Wise-IoU loss function mitigates the impact of low-quality sample data on grading accuracy.The improved model accurately identifies and separates persimmons of varying quality,effectively addressing quality grading detection in complex backgrounds.This provides a viable technical approach for achieving persimmon quality grading detection.展开更多
In the field of image forensics,image tampering detection is a critical and challenging task.Traditional methods based on manually designed feature extraction typically focus on a specific type of tampering operation,...In the field of image forensics,image tampering detection is a critical and challenging task.Traditional methods based on manually designed feature extraction typically focus on a specific type of tampering operation,which limits their effectiveness in complex scenarios involving multiple forms of tampering.Although deep learningbasedmethods offer the advantage of automatic feature learning,current approaches still require further improvements in terms of detection accuracy and computational efficiency.To address these challenges,this study applies the UNet 3+model to image tampering detection and proposes a hybrid framework,referred to as DDT-Net(Deep Detail Tracking Network),which integrates deep learning with traditional detection techniques.In contrast to traditional additive methods,this approach innovatively applies amultiplicative fusion technique during downsampling,effectively combining the deep learning feature maps at each layer with those generated by the Bayar noise stream.This design enables noise residual features to guide the learning of semantic features more precisely and efficiently,thus facilitating comprehensive feature-level interaction.Furthermore,by leveraging the complementary strengths of deep networks in capturing large-scale semantic manipulations and traditional algorithms’proficiency in detecting fine-grained local traces,the method significantly enhances the accuracy and robustness of tampered region detection.Compared with other approaches,the proposed method achieves an F1 score improvement exceeding 30% on the DEFACTO and DIS25k datasets.In addition,it has been extensively validated on other datasets,including CASIA and DIS25k.Experimental results demonstrate that this method achieves outstanding performance across various types of image tampering detection tasks.展开更多
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an...Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.展开更多
As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial ...As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial in effective intelligent fault diagnosis of various electrical equipment.In response to the increasing demand for sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation fault diagnosis,we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look Once(GD-YOLO).Firstly,a partial convolution group is designed based on different convolution kernels.We combine the partial convolution group with deep convolution to propose a new Grouped Channel-wise Spatial Convolution(GCSConv)that compensates for the information loss caused by spatial channel convolution.Secondly,the Gather and Distribute Mechanism,which addresses the fusion problem of different dimensional features,has been implemented by aligning and sharing information through aggregation and distribution mechanisms.Thirdly,considering the limitations in current bounding box regression and the imbalance between complex and simple samples,Maximum Possible Distance Intersection over Union(MPDIoU)and Adaptive SlideLoss is incorporated into the loss function,allowing samples near the Intersection over Union(IoU)to receive more attention through the dynamic variation of the mean Intersection over Union.The GD-YOLO algorithm can surpass YOLOv5,YOLOv7,and YOLOv8 in infrared image detection for electrical equipment,achieving a mean Average Precision(mAP)of 88.9%,with accuracy improvements of 3.7%,4.3%,and 3.1%,respectively.Additionally,the model delivers a frame rate of 48 FPS,which aligns with the precision and velocity criteria necessary for the detection of infrared images in power equipment.展开更多
Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is propose...Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.展开更多
The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on ...The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on encoding and decoding frameworks.In response to this,we propose a model called FlowDual-PixelClsObjectMec(FPCNet),which innovatively incorporates dual flow alignment technology in the decoding stage to rectify semantic discrepancies through streamlined feature correction fusion.Furthermore,the model employs an object-level similarity measurement coupled with pixel-level classification in the PixelClsObjectMec(PCOM)module during the final discrimination stage,significantly enhancing edge detail detection and overall accuracy.Experimental evaluations on the change detection dataset(CDD)and building CDD demonstrate superior performance,with F1 scores of 95.1%and 92.8%,respectively.Our findings indicate that the FPCNet outperforms the existing algorithms in stability,robustness,and other key metrics.展开更多
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for n...This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.展开更多
The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bott...The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bottleneck.Although variations and instability in ultra-scaled memory cells seriously degrade the calculation accuracy in IMC architectures,stochastic computing(SC)can compensate for these shortcomings due to its low sensitivity to cell disturbances.Furthermore,massive parallel computing can be processed to improve the speed and efficiency of the system.In this paper,by designing logic functions in NOR flash arrays,SC in IMC for the image edge detection is realized,demonstrating ultra-low computational complexity and power consumption(25.5 fJ/pixel at 2-bit sequence length).More impressively,the noise immunity is 6 times higher than that of the traditional binary method,showing good tolerances to cell variation and reliability degradation when implementing massive parallel computation in the array.展开更多
In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perfor...In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perform unsupervised fusion of the final fuzzy partition matrices from the Fuzzy C-Means(FCM) clustering for the feature space by applying compressed sampling to the given remote sensing images.The proposed approach exploits a CI-based data fusion of the membership function matrices,which are obtained by taking the Fuzzy C-Means(FCM) clustering of the frequency-domain feature vectors and spatial-domain feature vectors,aimed at enhancing the unsupervised change detection performance.Compressed sampling is performed to realize the image local feature sampling,which is a signal acquisition framework based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable recovery.The experimental results demonstrate that the proposed algorithm has a good change detection results and also performs quite well on denoising purpose.展开更多
Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic ...Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic image photographed by a tamper reflector and aCCD camera to detect the parameter of the circumferential equispaced curves. The effect of thesystem's off-center error, deflection error and pixel error on the parameter detection is analyzed,which shows that this technique make a good use of the property of the circumferential equispaced,and has a high power of anti off-center error and anti deflection error, resulting a high precisionat the parameter measurement on circumferential equispaced curves.展开更多
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H...The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.展开更多
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark...Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.展开更多
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for...Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.展开更多
Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approach...Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.展开更多
In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the bas...In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.展开更多
基金the Fundamental Research Grant Scheme (FRGS/1/2018/ICT06/UNIMAP/02/1)of the Ministry of Higher Education of Malaysia.
文摘Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.
基金financial supports of the National Natural Science Foundation of China(No.21535006)the Fundamental Research Funds for the Central Universities(No.XDJK2015B029)
文摘Highly photoluminescent nitrogen and sulfur co-doped carbon nanoparticles(CNPs) ca. 56 nm have been prepared through a green one-step hydrothermal synthesis route by using millet powder as carbon sources, in which the nitrogen and sulfur co-doping improves the photoluminescent efficiency of the CNPs. The as-prepared CNPs display excellent fluorescent properties and low biotoxicity with a relatively high quantum yield of 30.4%, which have been applied for bioimaging and highly sensitive and selective detection of iron(III) ions.
文摘The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.
文摘Adhesion molecule CD146 (100-130kDa) belongs to the immunoglobulin super family and it is originally identified as a biomarker for melanoma. Recently, CD146 is found as
基金National Natural Science Foundation of China(61703363,62272284)Shanxi Provincial Basic Research Program(201801D121148)Yuncheng University Research and Innovation Team for Data Mining and Industrial Intelligence Applications(YCXYTD-202402)。
文摘Addressing challenges in accurately detecting persimmon fruit quality in orchards—such as reliance on manual grading,low efficiency,severe foliage obstruction,and subtle differences between quality grades—this paper proposes a lightweight persimmon detection model based on an improved YOLOv8s architecture.First,the Conv layer in the backbone network is replaced with an ADown module to reduce model complexity.Second,MSFAN is introduced in the Neck layer to fully extract texture features from persimmon images,highlighting differences between quality grades.Finally,the Wise-IoU loss function mitigates the impact of low-quality sample data on grading accuracy.The improved model accurately identifies and separates persimmons of varying quality,effectively addressing quality grading detection in complex backgrounds.This provides a viable technical approach for achieving persimmon quality grading detection.
基金supported by National Natural Science Foundation of China(No.61502274).
文摘In the field of image forensics,image tampering detection is a critical and challenging task.Traditional methods based on manually designed feature extraction typically focus on a specific type of tampering operation,which limits their effectiveness in complex scenarios involving multiple forms of tampering.Although deep learningbasedmethods offer the advantage of automatic feature learning,current approaches still require further improvements in terms of detection accuracy and computational efficiency.To address these challenges,this study applies the UNet 3+model to image tampering detection and proposes a hybrid framework,referred to as DDT-Net(Deep Detail Tracking Network),which integrates deep learning with traditional detection techniques.In contrast to traditional additive methods,this approach innovatively applies amultiplicative fusion technique during downsampling,effectively combining the deep learning feature maps at each layer with those generated by the Bayar noise stream.This design enables noise residual features to guide the learning of semantic features more precisely and efficiently,thus facilitating comprehensive feature-level interaction.Furthermore,by leveraging the complementary strengths of deep networks in capturing large-scale semantic manipulations and traditional algorithms’proficiency in detecting fine-grained local traces,the method significantly enhances the accuracy and robustness of tampered region detection.Compared with other approaches,the proposed method achieves an F1 score improvement exceeding 30% on the DEFACTO and DIS25k datasets.In addition,it has been extensively validated on other datasets,including CASIA and DIS25k.Experimental results demonstrate that this method achieves outstanding performance across various types of image tampering detection tasks.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers 2024TIAD-CYKJCXX0121,2024NSCQ-LZX0135Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology graduate education high-quality development project,grant number gzlsz202401the Chongqing University of Technology-Chongqing LINGLUE Technology Co.,Ltd.,Electronic Information(Artificial Intelligence)graduate joint training basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.,Computer Technology graduate joint training base.
文摘Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.
基金Science and Technology Department of Jilin Province(No.20200403075SF)Education Department of Jilin Province(No.JJKH20240148KJ).
文摘As technologies related to power equipment fault diagnosis and infrared temperature measurement continue to advance,the classification and identification of infrared temperature measurement images have become crucial in effective intelligent fault diagnosis of various electrical equipment.In response to the increasing demand for sufficient feature fusion in current real-time detection and low detection accuracy in existing networks for Substation fault diagnosis,we introduce an innovative method known as Gather and Distribution Mechanism-You Only Look Once(GD-YOLO).Firstly,a partial convolution group is designed based on different convolution kernels.We combine the partial convolution group with deep convolution to propose a new Grouped Channel-wise Spatial Convolution(GCSConv)that compensates for the information loss caused by spatial channel convolution.Secondly,the Gather and Distribute Mechanism,which addresses the fusion problem of different dimensional features,has been implemented by aligning and sharing information through aggregation and distribution mechanisms.Thirdly,considering the limitations in current bounding box regression and the imbalance between complex and simple samples,Maximum Possible Distance Intersection over Union(MPDIoU)and Adaptive SlideLoss is incorporated into the loss function,allowing samples near the Intersection over Union(IoU)to receive more attention through the dynamic variation of the mean Intersection over Union.The GD-YOLO algorithm can surpass YOLOv5,YOLOv7,and YOLOv8 in infrared image detection for electrical equipment,achieving a mean Average Precision(mAP)of 88.9%,with accuracy improvements of 3.7%,4.3%,and 3.1%,respectively.Additionally,the model delivers a frame rate of 48 FPS,which aligns with the precision and velocity criteria necessary for the detection of infrared images in power equipment.
文摘Aimed at the long and narrow geometric features and poor generalization ability of the damage detection in conveyor belts with steel rope cores using the X-ray image,a detection method of damage X-ray image is proposed based on the improved fully convolutional one-stage object detection(FCOS)algorithm.The regression performance of bounding boxes was optimized by introducing the complete intersection over union loss function into the improved algorithm.The feature fusion network structure is modified by adding adaptive fusion paths to the feature fusion network structure,which makes full use of the features of accurate localization and semantics of multi-scale feature fusion networks.Finally,the network structure was trained and validated by using the X-ray image dataset of damages in conveyor belts with steel rope cores provided by a flaw detection equipment manufacturer.In addition,the data enhancement methods such as rotating,mirroring,and scaling,were employed to enrich the image dataset so that the model is adequately trained.Experimental results showed that the improved FCOS algorithm promoted the precision rate and the recall rate by 20.9%and 14.8%respectively,compared with the original algorithm.Meanwhile,compared with Fast R-CNN,Faster R-CNN,SSD,and YOLOv3,the improved FCOS algorithm has obvious advantages;detection precision rate and recall rate of the modified network reached 95.8%and 97.0%respectively.Furthermore,it demonstrated a higher detection accuracy without affecting the speed.The results of this work have some reference significance for the automatic identification and detection of steel core conveyor belt damage.
文摘The objective of this study is to address semantic misalignment and insufficient accuracy in edge detail and discrimination detection,which are common issues in deep learning-based change detection methods relying on encoding and decoding frameworks.In response to this,we propose a model called FlowDual-PixelClsObjectMec(FPCNet),which innovatively incorporates dual flow alignment technology in the decoding stage to rectify semantic discrepancies through streamlined feature correction fusion.Furthermore,the model employs an object-level similarity measurement coupled with pixel-level classification in the PixelClsObjectMec(PCOM)module during the final discrimination stage,significantly enhancing edge detail detection and overall accuracy.Experimental evaluations on the change detection dataset(CDD)and building CDD demonstrate superior performance,with F1 scores of 95.1%and 92.8%,respectively.Our findings indicate that the FPCNet outperforms the existing algorithms in stability,robustness,and other key metrics.
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
基金supported by the National Natural Scieince Foundation of China(Nos.52004204 and 52034007).
文摘This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.
基金supported by the National Natural Science Foundation of China(Nos.62034006,91964105,61874068)the China Key Research and Development Program(No.2016YFA0201802)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2020JQ28)Program of Qilu Young Scholars of Shandong University。
文摘The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bottleneck.Although variations and instability in ultra-scaled memory cells seriously degrade the calculation accuracy in IMC architectures,stochastic computing(SC)can compensate for these shortcomings due to its low sensitivity to cell disturbances.Furthermore,massive parallel computing can be processed to improve the speed and efficiency of the system.In this paper,by designing logic functions in NOR flash arrays,SC in IMC for the image edge detection is realized,demonstrating ultra-low computational complexity and power consumption(25.5 fJ/pixel at 2-bit sequence length).More impressively,the noise immunity is 6 times higher than that of the traditional binary method,showing good tolerances to cell variation and reliability degradation when implementing massive parallel computation in the array.
基金Supported by the National Natural Science Foundation of China(No.61071163)
文摘In this paper,an unsupervised change detection technique for remote sensing images acquired on the same geographical area but at different time instances is proposed by conducting Covariance Intersection(CI) to perform unsupervised fusion of the final fuzzy partition matrices from the Fuzzy C-Means(FCM) clustering for the feature space by applying compressed sampling to the given remote sensing images.The proposed approach exploits a CI-based data fusion of the membership function matrices,which are obtained by taking the Fuzzy C-Means(FCM) clustering of the frequency-domain feature vectors and spatial-domain feature vectors,aimed at enhancing the unsupervised change detection performance.Compressed sampling is performed to realize the image local feature sampling,which is a signal acquisition framework based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable recovery.The experimental results demonstrate that the proposed algorithm has a good change detection results and also performs quite well on denoising purpose.
文摘Aiming at the parameter detection of the circumferential equispaced curves,and on the background of the rifling parameter detection, a panoramic image based detectiontechnique is proposed, which employs the panoramic image photographed by a tamper reflector and aCCD camera to detect the parameter of the circumferential equispaced curves. The effect of thesystem's off-center error, deflection error and pixel error on the parameter detection is analyzed,which shows that this technique make a good use of the property of the circumferential equispaced,and has a high power of anti off-center error and anti deflection error, resulting a high precisionat the parameter measurement on circumferential equispaced curves.
基金funded by the National Key R&D Program of China(2020YFB1710100)the National Natural Science Foundation of China(Nos.52275337,52090042,51905188).
文摘The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
基金The National Science and Technology Support Project under contract No.2014BAB12B02the Natural Science Foundation of Liaoning Province under contract No.201602042
文摘Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.
基金financially supported by the National Council for Scientific and Technological Development(CNPq,Brazil),Swedish-Brazilian Research and Innovation Centre(CISB),and Saab AB under Grant No.CNPq:200053/2022-1the National Council for Scientific and Technological Development(CNPq,Brazil)under Grants No.CNPq:312924/2017-8 and No.CNPq:314660/2020-8.
文摘Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.
基金supported in part by the National Natural Science Foundation of China under grant No.(61472429,61070192,91018008,61303074,61170240)Beijing Natural Science Foundation under grant No.4122041+1 种基金National High-Tech Research Development Program of China under grant No.2007AA01Z414National Science and Technology Major Project of China under grant No.2012ZX01039-004
文摘Copy-Move Forgery(CMF) is one of the simple and effective operations to create forged digital images.Recently,techniques based on Scale Invariant Features Transform(SIFT) are widely used to detect CMF.Various approaches under the SIFT-based framework are the most acceptable ways to CMF detection due to their robust performance.However,for some CMF images,these approaches cannot produce satisfactory detection results.For instance,the number of the matched keypoints may be too less to prove an image to be a CMF image or to generate an accurate result.Sometimes these approaches may even produce error results.According to our observations,one of the reasons is that detection results produced by the SIFT-based framework depend highly on parameters whose values are often determined with experiences.These values are only applicable to a few images,which limits their application.To solve the problem,a novel approach named as CMF Detection with Particle Swarm Optimization(CMFDPSO) is proposed in this paper.CMFD-PSO integrates the Particle Swarm Optimization(PSO) algorithm into the SIFT-based framework.It utilizes the PSO algorithm to generate customized parameter values for images,which are used for CMF detection under the SIFT-based framework.Experimental results show that CMFD-PSO has good performance.
基金Supported by the National Natural Science Foundation of China (No. 61172047)
文摘In order to overcome the disadvantages of low accuracy rate, high complexity and poor robustness to image noise in many traditional algorithms of cloud image detection, this paper proposed a novel algorithm on the basis of Markov Random Field (MRF) modeling. This paper first defined algorithm model and derived the core factors affecting the performance of the algorithm, and then, the solving of this algorithm was obtained by the use of Belief Propagation (BP) algorithm and Iterated Conditional Modes (ICM) algorithm. Finally, experiments indicate that this algorithm for the cloud image detection has higher average accuracy rate which is about 98.76% and the average result can also reach 96.92% for different type of image noise.