Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer...Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.展开更多
BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with ...BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with the conventional energyintegrating detector CT.AIM To evaluate PCD CT in oncologic imaging,focusing on its role in tumor detection,staging,and treatment response assessment.METHODS We performed a systematic PubMed search from January 1,2017 to December 31,2024,using the keywords“photon-counting CT”,“cancer”,and“tumor”to identify studies on its use in oncologic imaging.We included experimental studies on humans or human phantoms and excluded reviews,commentaries,editorials,non-English,animal,and non-experimental studies.Study selection followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Out of 175 initial studies,39 met the inclusion criteria after screening and full-text review.Data extraction focused on study type,country of origin,and oncologic applications of photon-counting CT.No formal risk of bias assessment was performed,and the review was not registered in PROSPERO as it did not include a meta-analysis.RESULTS Key findings highlighted the advantages of PCD CT in imaging renal masses,adrenal adenomas,ovarian cancer,breast cancer,prostate cancer,pancreatic tumors,hepatocellular carcinoma,metastases,multiple myeloma,and lung cancer.Additionally,PCD CT has demonstrated improved lesion characterization and enhanced diagnostic accuracy in oncology.Despite its promising capabilities challenges related to data processing,storage,and accessibility remain.CONCLUSION As PCD CT technology evolves,its integration into routine oncologic imaging has the potential to significantly enhance cancer diagnosis and patient management.展开更多
In this editorial,a commentary on the article by Chang et al has been provided,the course of treatment of anorectal fistulas,especially complex and recurring ones,require accurate diagnostic procedures for determining...In this editorial,a commentary on the article by Chang et al has been provided,the course of treatment of anorectal fistulas,especially complex and recurring ones,require accurate diagnostic procedures for determining ideal surgical procedures.Conventional ways of imaging sometimes fall short,offering insufficient insights in aggravated instances.In this editorial,a novel application of hydrogen peroxide-enhanced magnetic resonance imaging(HP-MRI)that promises significant improvements in the imaging of anorectal fistula.Study is based on a retrospective investigation of 60 patients,contrasts the new HP-MRI with conventional diagnostic techniques such as physical examination,trans-perineal ultrasonography and poor spatial resolution MRI.The findings demonstrate HP-MRI's incredible diagnostic performance,with sensitivity and specificity rates of 96.08%and 90.91%,respectively,and unparalleled interobserver agreement(Kappa values ranging from 0.80 to 0.89).It has been a significant advancement for assessment of anorectal fistulas providing a better roadmap for surgical planning,lowering recurrence rates as well as reduced personal and financial burden on patients by reducing the need for repeated treatment and extended hospital stays.The remaining funds can be utilized for treatment of other medical need.Ultimately HP-MRI provides us a healthier&more efficient society by improvising patients well-being&optimized healthcare infrastructure.展开更多
In this editorial,we comment on the article by Lambert et al,published in the recent issue of the World Journal of Radiology.The focus of the editorial is to explore the advancements in whole-body magnetic resonance i...In this editorial,we comment on the article by Lambert et al,published in the recent issue of the World Journal of Radiology.The focus of the editorial is to explore the advancements in whole-body magnetic resonance imaging(WB-MRI)techno-logy,its current clinical applications,and the challenges that must be addressed to fully realize its potential in oncological imaging.WB-MRI has emerged as a pivotal tool in oncological imaging,offering comprehensive disease assessment without ionizing radiation.Its applications span the detection of bone metastases,evaluation of hematologic malignancies,and staging of a wide range of cancers,including lymphoma,prostate,and breast cancers.Advanced techniques such as diffusion-weighted imaging have enhanced its diagnostic performance by pro-viding superior lesion-to-background contrast and quantitative metrics.Despite its diagnostic strengths,WB-MRI faces challenges in standardization,patient acceptance,and integration into clinical workflows.Variability in acquisition pro-tocols,hardware differences,and patient-related factors,such as anxiety and motion artifacts,have limited widespread adoption.Emerging guidelines like MET-RADS-P and ONCO-RADS aim to address these issues by promoting stan-dardized protocols tailored to specific clinical needs.This editorial explores the advancements in WB-MRI technology,its current clinical applications,and the barriers that must be overcome to maximize its utility.By addressing these cha-llenges and embracing standardization,WB-MRI holds the potential to redefine the landscape of oncological imaging,aligning diagnostic precision with modern treatment goals of reducing long-term patient risk.展开更多
BACKGROUND Cutaneous melanoma is an aggressive skin cancer with high metastatic potential.Accurate staging is critical to guide therapeutic strategies and improve prognosis.Whole-body magnetic resonance imaging(WB-MRI...BACKGROUND Cutaneous melanoma is an aggressive skin cancer with high metastatic potential.Accurate staging is critical to guide therapeutic strategies and improve prognosis.Whole-body magnetic resonance imaging(WB-MRI),particularly when combined with diffusion-weighted imaging(DWI),has emerged as promising tool for comprehensive,radiation-free assessment of metastatic spread.AIM To systematically review the diagnostic performance and clinical utility of WBMRI in the staging and restaging of cutaneous melanoma,with comparison to conventional imaging modalities such as computed tomography(CT)and positron emission tomography/CT(PET/CT).METHODS A systematic literature review was conducted using PubMed,Embase,Scopus and Web of Science databases for studies published in the last 10 years.Inclusion criteria focused on comparative diagnostic accuracy studies of WB-MRI vs CT and PET/CT for melanoma staging.The methodological quality of the studies was appraised using the QUADAS-2 tool.RESULTS Sixteen studies involving over 700 patients met the inclusion criteria.WB-MRI showed high sensitivity(73%-90%)and specificity(up to 98%)in detecting metastases,particularly in bone,liver and soft tissue.DWI enhanced lesion detection,and WB-MRI often influenced clinical management decisions.However,CT outperformed WB-MRI in identifying small pulmonary nodules.AI-assisted analysis and contrastenhanced sequences further improved diagnostic confidence.CONCLUSION WB-MRI represents a robust imaging modality for staging cutaneous melanoma,offering superior soft-tissue contrast and functional imaging without ionizing radiation.Its strengths lie in detecting bone,liver and brain metastases.Challenges include limited lung lesion detection,cost,and availability.Advances in artificial intelligence,Hybrid PET/MRY systems,and radiomics are poised to expand WB-MRI’s role in personalized melanoma management.展开更多
This narrative review examines the use of imaging biomarkers for diagnosing and monitoring hydrocephalus from birth through childhood.Early detection and longitudinal follow-up are essential for guiding timely interve...This narrative review examines the use of imaging biomarkers for diagnosing and monitoring hydrocephalus from birth through childhood.Early detection and longitudinal follow-up are essential for guiding timely interventions and asse-ssing treatment outcomes.Cranial ultrasound and magnetic resonance imaging(MRI)are the primary imaging modalities,providing critical insights into ventri-cular size,cerebrospinal fluid dynamics,and neurodevelopmental implications.Key parameters,including Evans’index,Levene’s index,and the Cella Media index,as well as volumetric and diffusion-based MRI techniques,have been explored for their diagnostic and prognostic value.Advances in automated image analysis and artificial intelligence have further improved measurement precision and reproducibility.Despite these developments,challenges remain in standar-dizing imaging protocols and establishing normative reference values across different pediatric populations.This review highlights the strengths and limita-tions of current imaging approaches,emphasizing the need for consistent metho-dologies to enhance diagnostic accuracy and optimize patient management in hydrocephalus.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is i...The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection.In this study,we integrate Raman imaging technology with an artificial intelligence(AI)generative model,proposing an innovative approach for intraoperative margin status diagnosis.This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images,which are then transformed into hematoxylin-eosin(H&E)-stained histopathological images using an AI generative model for histopathological diagnosis.The generated H&E-stained images clearly illustrate the tissue’s pathological conditions.Independently reviewed by three pathologists,the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%.Notably,it outperforms current clinical practices,especially in TSCC with positive lymph node metastasis or moderately differentiated grades.This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations,promising a versatile diagnostic tool beyond TSCC.展开更多
BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evalu...BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among...Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among countries.The etiology of GBM has not been entirely clarified.No risk factors such as smoking,chemicals or dietary can be identified for GBM.Only the exposure to high radiation dose such as radiotherapy of head and neck cancers have been reported to increase the risk of glioma tumors.In this review,the authors attempted to cover several aspects of GBM.This review was based on a collection of recent publications from different research fields but all related to GBM in order to shed the light on this disease.We highlighted the current insights of GBM in the aspects of epidemiology,pathogenesis,etiology,molecular genetics,imaging technologies,artificial intelligence and treatment.A literature review was conducted for GBM with relevant keywords.Although GBM was known since several decades,its causes are still confounding,and its early detection is often unpredictable.Since the hereditary aspect of GBM is very low,there remains as the common symptoms the interference with normal brain function,memory loss,unusual behavior,headaches and seizures.The progress in GBM treatment is not satisfactory even with the deployment of huge efforts and financial costs in many domains like gene therapy,surgery and chemoradiotherapy.Despite the rapid developments of the standard treatment for GBM,the trend of survival rate did not change among years.展开更多
A recent study by Luo et al examined the relationship between the pathological types of pancreatic cancer(PC)and their imaging characteristics.While this study presented an important step toward improving diagnostic a...A recent study by Luo et al examined the relationship between the pathological types of pancreatic cancer(PC)and their imaging characteristics.While this study presented an important step toward improving diagnostic accuracy for PC,we have several concerns regarding its generalizability,cohort selection,imaging variability,statistical methods,and potential confounding factors.We recommended that future research adopt multi-center,prospective designs to improve representation and minimize bias.Additionally,incorporating advanced imaging techniques such as radiomics and artificial intelligence and conducting more comprehensive statistical analyses would be valuable.By implementing these strategies,future studies can yield more reliable and externally validated findings that improve the clinical applicability of imaging-based differentiation of PC.Addressing these methodological issues could significantly advance the field of gastrointestinal oncology and improve patient management and outcomes.展开更多
Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embed...Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embedded methods,have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data.Deep learning-based FS methods,particularly Convolutional Neural Networks(CNNs)and autoencoders,have demonstrated superior performance but lack interpretability.Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution,offering improved accuracy and explainability.Furthermore,integratingmulti-modal imaging data(e.g.,MagneticResonance Imaging(MRI),ComputedTomography(CT),Positron Emission Tomography(PET),and Ultrasound(US))poses additional challenges in FS,necessitating advanced feature fusion strategies.Multi-modal feature fusion combines information fromdifferent imagingmodalities to improve diagnostic accuracy.Recently,quantum computing has gained attention as a revolutionary approach for FS,providing the potential to handle high-dimensional medical data more efficiently.This systematic literature review comprehensively examines classical,Deep Learning(DL),hybrid,and quantum-based FS techniques inmedical imaging.Key outcomes include a structured taxonomy of FS methods,a critical evaluation of their performance across modalities,and identification of core challenges such as computational burden,interpretability,and ethical considerations.Future research directions—such as explainable AI(XAI),federated learning,and quantum-enhanced FS—are also emphasized to bridge the current gaps.This review provides actionable insights for developing scalable,interpretable,and clinically applicable FS methods in the evolving landscape of medical imaging.展开更多
Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particu...Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particularly anti-tumor necrosis factor agents,the majority of patients still require surgical intervention.Accurate diagnosis and monitoring are essential to optimise outcomes and guide multidisciplinary management.Although clinical scoring systems such as the perianal disease activity index are widely used,their subjective application limits their reproducibility and reliability,underscoring the need for more objective methods of evaluating perianal fistulising Crohn’s disease activity.Imaging has thus become central to the objective assessment of perianal fistulising Crohn’s disease,with magnetic resonance imaging(MRI)recognised as the gold standard in view of its ability to provide clear,detailed images of the perianal region in a radiation-free manner.Guidelines also endorse the use of imaging modalities such as endoanal ultrasound and transperineal ultrasound as viable alternatives to MRI for the assessment of perianal fistulising Crohn’s disease in centres with appropriate expertise.This article aims to evaluate and compare the diagnostic accuracy and clinical utility of MRI,endoanal ultrasound,and transperineal ultrasound in the assessment of perianal fistulising Crohn’s disease,highlighting their respective strengths,limitations,and roles in clinical practice.展开更多
To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed,...To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.展开更多
BACKGROUND Pedicle screw instrumentation is a critical technique in spinal surgery,offering effective stabilization for various spinal conditions.However,the impact of intraoperative imaging quality—specifically the ...BACKGROUND Pedicle screw instrumentation is a critical technique in spinal surgery,offering effective stabilization for various spinal conditions.However,the impact of intraoperative imaging quality—specifically the use of both anteroposterior(AP)and lateral views—on surgical outcomes remains insufficiently studied.Evaluating whether the adequacy of these imaging modalities affects the risk of unplanned returns to theatre(URTT)within 90 days due to screw malplacement is essential for refining surgical practices and improving patient care.AIM To evaluate how intraoperative imaging adequacy influences unplanned returnto-theatre rates,focusing on AP and lateral fluoroscopic views.METHODS This retrospective cohort study analyzed 1335 patients who underwent thoracolumbar and sacral pedicle screw instrumentation between January 2013 and December 2022.Data on intraoperative imaging adequacy,screw placement,and URTT events were collected and statistically analyzed using IBM SPSS v23.Imaging adequacy was assessed based on the presence of both AP and lateral views,and outcomes were compared between imaging groups.RESULTS A total of 9016 pedicle screws were inserted,with 82 screws identified as malplaced in 52 patients.Of these,46 patients required URTT due to screw malplacement,with 37 returning within 90 days(URTT90).Patients with both AP and lateral imaging saved intraoperatively had significantly lower URTT90 rates compared to those with only lateral imaging saved,demonstrating the critical role of imaging adequacy in improving surgical outcomes.CONCLUSION This study underscores that comprehensive intraoperative imaging with both AP and lateral views reduces unplanned returns,improves outcomes,enhances precision,and offers a cost-effective approach for better spinal surgery results.展开更多
Chronic otitis media(COM)is a long-standing inflammatory condition affecting the middle ear and mastoid cavity,often resulting in progressive structural damage and functional deficits.Radiological imaging is fundament...Chronic otitis media(COM)is a long-standing inflammatory condition affecting the middle ear and mastoid cavity,often resulting in progressive structural damage and functional deficits.Radiological imaging is fundamental in diagnosing the disease,assessing its severity,and identifying possible complications.The literature indicates that the prevalence rates of extracranial and intracranial complications range from 0.69% to 5%,while the mortality rate for intracranial complications is 26%.While magnetic resonance imaging is particularly useful in distinguishing soft tissue abnormalities and detecting intracranial extensions like meningitis,brain abscess,and sigmoid sinus thrombosis,highresolution computed tomography remains the preferred modality for evaluating bony erosion,cholesteatoma,and mastoid involvement.Key complications such as ossicular chain destruction,facial nerve damage,and labyrinthine fistulae can be precisely identified using advanced imaging modalities,allowing for timely and effective surgical intervention.This minireview underscores the essential role of radiology in both diagnosing and managing COM,highlighting critical imaging findings that facilitate early detection and inform treatment decisions.A collaborative approach among radiologists,otolaryngologists,and infectious disease specialists is crucial for improving clinical outcomes in affected patients.展开更多
Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor e...Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor effects remains poorly understood.Herein,we elucidate the mechanisms governing the tetraphenylethene(TPE)'s function(rotor-effect or aggregation-effect) in cyanine systems by tuning the methine-chain length from Cy3 to Cy5 to Cy7.Our study shows that modulating the frontier orbital energy difference(ΔE(DA)) between the cyanine and TPE allows TPE to display AIE property in Cy3,act as a rotor in Cy5 uniquely devoid of aggregation activation,or neither in Cy7.In vitro and in vivo results further demonstrate that rotor-specific TPE-Cy5 can serve as a sensitive probe for imaging tumor rigidity.We anticipate that continued advancements in TPE rotor visualization will open new avenues for understanding the biophysical behaviors of tumors.展开更多
Objective:To explore the value of multimodal MRI enhancement scanning and diffusion-weighted imaging in differentiating non-puerperal mastitis(NPM)and breast cancer.Methods:From September 2022 to September 2024,56 pat...Objective:To explore the value of multimodal MRI enhancement scanning and diffusion-weighted imaging in differentiating non-puerperal mastitis(NPM)and breast cancer.Methods:From September 2022 to September 2024,56 patients with breast diseases were selected as samples and grouped according to disease type.Twenty-eight patients with breast cancer were included in Group A,and 28 patients with NPM were included in Group B.All patients underwent multimodal MRI enhancement scanning and diffusion-weighted imaging.The MRI results,time-signal intensity curves,ADC values,lesion intensity,and imaging signs were compared between the two groups.Results:There were no significant differences in enhancement characteristics,lymph node enlargement,and margins between Group A and Group B(P>0.05).The proportion of outflow curves in Group A was higher than that in Group B(P<0.05).The ADC value in Group A was lower than that in Group B,and the lesion intensity was higher than that in Group B(P<0.05).There were significant differences in imaging signs,such as abscess or sinus,ascending time-signal curve,and mammary duct dilation between Group A and Group B(P<0.05).Conclusion:Multimodal MRI enhancement scanning and diffusion-weighted imaging techniques can be used to diagnose breast diseases.Comprehensive analysis of time-signal intensity curves,lesion intensity,imaging signs,and ADC values can differentiate between NPM and breast cancer.展开更多
Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in...Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in tumor patients,noninvasive imaging technologies play pivotal roles in the risk stratification,early diagnosis,monitoring and follow-up for CTR-CVT.In recent years,the field of cardio-oncology has witnessed continual updates in diagnostic and therapeutic strategies,with several pertinent guidelines and expert consensus documents issued in China and abroad.However,there remains a conspicuous absence of systematic guidance documents on the application of imaging techniques in the clinical practice of cardio-oncology.Therefore,the Chinese Anti-Cancer Association Society of Integrative Cardio-oncology,the Ultrasound Branch of the Chinese Medical Association,and the Chinese Society of Echocardiography convened experts to formulate the"Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity".Building upon the systematic evaluation of guidelines and the latest evidence-based medical research in the field of cardio-oncology domestically and abroad,and in conjunction with data derived from evidence-based medical research in China,this guideline proposes noninvasive imaging examination methods and monitoring strategies for CTR-CVT,aiming to further standardize and guide the clinical practice of multidisciplinary physicians specializing in cardio-oncology in China.展开更多
文摘Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.
文摘BACKGROUND Photon-counting detector(PCD)CT represents a transformative advancement in radiological imaging,offering superior spatial resolution,enhanced contrast-tonoise ratio,and reduced radiation dose compared with the conventional energyintegrating detector CT.AIM To evaluate PCD CT in oncologic imaging,focusing on its role in tumor detection,staging,and treatment response assessment.METHODS We performed a systematic PubMed search from January 1,2017 to December 31,2024,using the keywords“photon-counting CT”,“cancer”,and“tumor”to identify studies on its use in oncologic imaging.We included experimental studies on humans or human phantoms and excluded reviews,commentaries,editorials,non-English,animal,and non-experimental studies.Study selection followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.Out of 175 initial studies,39 met the inclusion criteria after screening and full-text review.Data extraction focused on study type,country of origin,and oncologic applications of photon-counting CT.No formal risk of bias assessment was performed,and the review was not registered in PROSPERO as it did not include a meta-analysis.RESULTS Key findings highlighted the advantages of PCD CT in imaging renal masses,adrenal adenomas,ovarian cancer,breast cancer,prostate cancer,pancreatic tumors,hepatocellular carcinoma,metastases,multiple myeloma,and lung cancer.Additionally,PCD CT has demonstrated improved lesion characterization and enhanced diagnostic accuracy in oncology.Despite its promising capabilities challenges related to data processing,storage,and accessibility remain.CONCLUSION As PCD CT technology evolves,its integration into routine oncologic imaging has the potential to significantly enhance cancer diagnosis and patient management.
文摘In this editorial,a commentary on the article by Chang et al has been provided,the course of treatment of anorectal fistulas,especially complex and recurring ones,require accurate diagnostic procedures for determining ideal surgical procedures.Conventional ways of imaging sometimes fall short,offering insufficient insights in aggravated instances.In this editorial,a novel application of hydrogen peroxide-enhanced magnetic resonance imaging(HP-MRI)that promises significant improvements in the imaging of anorectal fistula.Study is based on a retrospective investigation of 60 patients,contrasts the new HP-MRI with conventional diagnostic techniques such as physical examination,trans-perineal ultrasonography and poor spatial resolution MRI.The findings demonstrate HP-MRI's incredible diagnostic performance,with sensitivity and specificity rates of 96.08%and 90.91%,respectively,and unparalleled interobserver agreement(Kappa values ranging from 0.80 to 0.89).It has been a significant advancement for assessment of anorectal fistulas providing a better roadmap for surgical planning,lowering recurrence rates as well as reduced personal and financial burden on patients by reducing the need for repeated treatment and extended hospital stays.The remaining funds can be utilized for treatment of other medical need.Ultimately HP-MRI provides us a healthier&more efficient society by improvising patients well-being&optimized healthcare infrastructure.
文摘In this editorial,we comment on the article by Lambert et al,published in the recent issue of the World Journal of Radiology.The focus of the editorial is to explore the advancements in whole-body magnetic resonance imaging(WB-MRI)techno-logy,its current clinical applications,and the challenges that must be addressed to fully realize its potential in oncological imaging.WB-MRI has emerged as a pivotal tool in oncological imaging,offering comprehensive disease assessment without ionizing radiation.Its applications span the detection of bone metastases,evaluation of hematologic malignancies,and staging of a wide range of cancers,including lymphoma,prostate,and breast cancers.Advanced techniques such as diffusion-weighted imaging have enhanced its diagnostic performance by pro-viding superior lesion-to-background contrast and quantitative metrics.Despite its diagnostic strengths,WB-MRI faces challenges in standardization,patient acceptance,and integration into clinical workflows.Variability in acquisition pro-tocols,hardware differences,and patient-related factors,such as anxiety and motion artifacts,have limited widespread adoption.Emerging guidelines like MET-RADS-P and ONCO-RADS aim to address these issues by promoting stan-dardized protocols tailored to specific clinical needs.This editorial explores the advancements in WB-MRI technology,its current clinical applications,and the barriers that must be overcome to maximize its utility.By addressing these cha-llenges and embracing standardization,WB-MRI holds the potential to redefine the landscape of oncological imaging,aligning diagnostic precision with modern treatment goals of reducing long-term patient risk.
文摘BACKGROUND Cutaneous melanoma is an aggressive skin cancer with high metastatic potential.Accurate staging is critical to guide therapeutic strategies and improve prognosis.Whole-body magnetic resonance imaging(WB-MRI),particularly when combined with diffusion-weighted imaging(DWI),has emerged as promising tool for comprehensive,radiation-free assessment of metastatic spread.AIM To systematically review the diagnostic performance and clinical utility of WBMRI in the staging and restaging of cutaneous melanoma,with comparison to conventional imaging modalities such as computed tomography(CT)and positron emission tomography/CT(PET/CT).METHODS A systematic literature review was conducted using PubMed,Embase,Scopus and Web of Science databases for studies published in the last 10 years.Inclusion criteria focused on comparative diagnostic accuracy studies of WB-MRI vs CT and PET/CT for melanoma staging.The methodological quality of the studies was appraised using the QUADAS-2 tool.RESULTS Sixteen studies involving over 700 patients met the inclusion criteria.WB-MRI showed high sensitivity(73%-90%)and specificity(up to 98%)in detecting metastases,particularly in bone,liver and soft tissue.DWI enhanced lesion detection,and WB-MRI often influenced clinical management decisions.However,CT outperformed WB-MRI in identifying small pulmonary nodules.AI-assisted analysis and contrastenhanced sequences further improved diagnostic confidence.CONCLUSION WB-MRI represents a robust imaging modality for staging cutaneous melanoma,offering superior soft-tissue contrast and functional imaging without ionizing radiation.Its strengths lie in detecting bone,liver and brain metastases.Challenges include limited lung lesion detection,cost,and availability.Advances in artificial intelligence,Hybrid PET/MRY systems,and radiomics are poised to expand WB-MRI’s role in personalized melanoma management.
文摘This narrative review examines the use of imaging biomarkers for diagnosing and monitoring hydrocephalus from birth through childhood.Early detection and longitudinal follow-up are essential for guiding timely interventions and asse-ssing treatment outcomes.Cranial ultrasound and magnetic resonance imaging(MRI)are the primary imaging modalities,providing critical insights into ventri-cular size,cerebrospinal fluid dynamics,and neurodevelopmental implications.Key parameters,including Evans’index,Levene’s index,and the Cella Media index,as well as volumetric and diffusion-based MRI techniques,have been explored for their diagnostic and prognostic value.Advances in automated image analysis and artificial intelligence have further improved measurement precision and reproducibility.Despite these developments,challenges remain in standar-dizing imaging protocols and establishing normative reference values across different pediatric populations.This review highlights the strengths and limita-tions of current imaging approaches,emphasizing the need for consistent metho-dologies to enhance diagnostic accuracy and optimize patient management in hydrocephalus.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
基金supported by the National Natural Science Foundation of China(Grant Nos.82272955 and 22203057)the Natural Science Foundation of Fujian Province(Grant No.2021J011361).
文摘The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection.In this study,we integrate Raman imaging technology with an artificial intelligence(AI)generative model,proposing an innovative approach for intraoperative margin status diagnosis.This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images,which are then transformed into hematoxylin-eosin(H&E)-stained histopathological images using an AI generative model for histopathological diagnosis.The generated H&E-stained images clearly illustrate the tissue’s pathological conditions.Independently reviewed by three pathologists,the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%.Notably,it outperforms current clinical practices,especially in TSCC with positive lymph node metastasis or moderately differentiated grades.This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations,promising a versatile diagnostic tool beyond TSCC.
文摘BACKGROUND Transcatheter arterial chemoembolization(TACE)is a key treatment approach for advanced invasive liver cancer(infiltrative hepatocellular carcinoma).However,its therapeutic response can be difficult to evaluate accurately using conventional two-dimensional imaging criteria due to the tumor’s diffuse and multifocal growth pattern.Volumetric imaging,especially enhanced tumor volume(ETV),offers a more comprehensive assessment.Nonetheless,bias field inhomogeneity in magnetic resonance imaging(MRI)poses challenges,potentially skewing volumetric measurements and undermining prognostic evaluation.AIM To investigate whether MRI bias field correction enhances the accuracy of volumetric assessment of infiltrative hepatocellular carcinoma treated with TACE,and to analyze how this improved measurement impacts prognostic prediction.METHODS We retrospectively collected data from 105 patients with invasive liver cancer who underwent TACE treatment at the Affiliated Hospital of Xuzhou Medical University from January 2020 to January 2024.The improved N4 bias field correction algorithm was applied to process MRI images,and the ETV before and after treatment was calculated.The ETV measurements before and after correction were compared,and their relationship with patient prognosis was analyzed.A Cox proportional hazards model was used to evaluate prognostic factors,with Martingale residual analysis determining the optimal cutoff value,followed by survival analysis.RESULTS Bias field correction significantly affected ETV measurements,with the corrected baseline ETV mean(505.235 cm^(3))being significantly lower than before correction(825.632 cm^(3),P<0.001).Cox analysis showed that the hazard ratio(HR)for corrected baseline ETV(HR=1.165,95%CI:1.069-1.268)was higher than before correction(HR=1.063,95%CI:1.031-1.095).Using 412 cm^(3) as the cutoff,the group with baseline ETV<415 cm^(3) had a longer median survival time compared to the≥415 cm^(3) group(18.523 months vs 8.926 months,P<0.001).The group with an ETV reduction rate≥41%had better prognosis than the<41%group(17.862 months vs 9.235 months,P=0.006).Multivariate analysis confirmed that ETV reduction rate(HR=0.412,P<0.001),Child-Pugh classification(HR=0.298,P<0.001),and Barcelona Clinic Liver Cancer stage(HR=0.578,P=0.045)were independent prognostic factors.CONCLUSION Volume imaging based on MRI bias field correction can improve the accuracy of evaluating the efficacy of TACE treatment for invasive liver cancer.The corrected ETV and its reduction rate can serve as independent indicators for predicting patient prognosis,providing important reference for developing individualized treatment strategies.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
文摘Glioblastoma multiforme(GBM)are the most aggressive and common tumors in the central nervous system.GBM are classified as grade IV according to the World Health Organization.The incidence of GBM slightly differs among countries.The etiology of GBM has not been entirely clarified.No risk factors such as smoking,chemicals or dietary can be identified for GBM.Only the exposure to high radiation dose such as radiotherapy of head and neck cancers have been reported to increase the risk of glioma tumors.In this review,the authors attempted to cover several aspects of GBM.This review was based on a collection of recent publications from different research fields but all related to GBM in order to shed the light on this disease.We highlighted the current insights of GBM in the aspects of epidemiology,pathogenesis,etiology,molecular genetics,imaging technologies,artificial intelligence and treatment.A literature review was conducted for GBM with relevant keywords.Although GBM was known since several decades,its causes are still confounding,and its early detection is often unpredictable.Since the hereditary aspect of GBM is very low,there remains as the common symptoms the interference with normal brain function,memory loss,unusual behavior,headaches and seizures.The progress in GBM treatment is not satisfactory even with the deployment of huge efforts and financial costs in many domains like gene therapy,surgery and chemoradiotherapy.Despite the rapid developments of the standard treatment for GBM,the trend of survival rate did not change among years.
文摘A recent study by Luo et al examined the relationship between the pathological types of pancreatic cancer(PC)and their imaging characteristics.While this study presented an important step toward improving diagnostic accuracy for PC,we have several concerns regarding its generalizability,cohort selection,imaging variability,statistical methods,and potential confounding factors.We recommended that future research adopt multi-center,prospective designs to improve representation and minimize bias.Additionally,incorporating advanced imaging techniques such as radiomics and artificial intelligence and conducting more comprehensive statistical analyses would be valuable.By implementing these strategies,future studies can yield more reliable and externally validated findings that improve the clinical applicability of imaging-based differentiation of PC.Addressing these methodological issues could significantly advance the field of gastrointestinal oncology and improve patient management and outcomes.
文摘Feature selection(FS)plays a crucial role in medical imaging by reducing dimensionality,improving computational efficiency,and enhancing diagnostic accuracy.Traditional FS techniques,including filter,wrapper,and embedded methods,have been widely used but often struggle with high-dimensional and heterogeneous medical imaging data.Deep learning-based FS methods,particularly Convolutional Neural Networks(CNNs)and autoencoders,have demonstrated superior performance but lack interpretability.Hybrid approaches that combine classical and deep learning techniques have emerged as a promising solution,offering improved accuracy and explainability.Furthermore,integratingmulti-modal imaging data(e.g.,MagneticResonance Imaging(MRI),ComputedTomography(CT),Positron Emission Tomography(PET),and Ultrasound(US))poses additional challenges in FS,necessitating advanced feature fusion strategies.Multi-modal feature fusion combines information fromdifferent imagingmodalities to improve diagnostic accuracy.Recently,quantum computing has gained attention as a revolutionary approach for FS,providing the potential to handle high-dimensional medical data more efficiently.This systematic literature review comprehensively examines classical,Deep Learning(DL),hybrid,and quantum-based FS techniques inmedical imaging.Key outcomes include a structured taxonomy of FS methods,a critical evaluation of their performance across modalities,and identification of core challenges such as computational burden,interpretability,and ethical considerations.Future research directions—such as explainable AI(XAI),federated learning,and quantum-enhanced FS—are also emphasized to bridge the current gaps.This review provides actionable insights for developing scalable,interpretable,and clinically applicable FS methods in the evolving landscape of medical imaging.
文摘Perianal fistulising Crohn’s disease is a challenging complication that can affect up to 20%of patients with Crohn’s disease and is associated with significant morbidity.Despite advances in medical therapies,particularly anti-tumor necrosis factor agents,the majority of patients still require surgical intervention.Accurate diagnosis and monitoring are essential to optimise outcomes and guide multidisciplinary management.Although clinical scoring systems such as the perianal disease activity index are widely used,their subjective application limits their reproducibility and reliability,underscoring the need for more objective methods of evaluating perianal fistulising Crohn’s disease activity.Imaging has thus become central to the objective assessment of perianal fistulising Crohn’s disease,with magnetic resonance imaging(MRI)recognised as the gold standard in view of its ability to provide clear,detailed images of the perianal region in a radiation-free manner.Guidelines also endorse the use of imaging modalities such as endoanal ultrasound and transperineal ultrasound as viable alternatives to MRI for the assessment of perianal fistulising Crohn’s disease in centres with appropriate expertise.This article aims to evaluate and compare the diagnostic accuracy and clinical utility of MRI,endoanal ultrasound,and transperineal ultrasound in the assessment of perianal fistulising Crohn’s disease,highlighting their respective strengths,limitations,and roles in clinical practice.
基金supported by the Jilin Province Science and Technology Development Plan Item (No.20240402068GH)。
文摘To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.
文摘BACKGROUND Pedicle screw instrumentation is a critical technique in spinal surgery,offering effective stabilization for various spinal conditions.However,the impact of intraoperative imaging quality—specifically the use of both anteroposterior(AP)and lateral views—on surgical outcomes remains insufficiently studied.Evaluating whether the adequacy of these imaging modalities affects the risk of unplanned returns to theatre(URTT)within 90 days due to screw malplacement is essential for refining surgical practices and improving patient care.AIM To evaluate how intraoperative imaging adequacy influences unplanned returnto-theatre rates,focusing on AP and lateral fluoroscopic views.METHODS This retrospective cohort study analyzed 1335 patients who underwent thoracolumbar and sacral pedicle screw instrumentation between January 2013 and December 2022.Data on intraoperative imaging adequacy,screw placement,and URTT events were collected and statistically analyzed using IBM SPSS v23.Imaging adequacy was assessed based on the presence of both AP and lateral views,and outcomes were compared between imaging groups.RESULTS A total of 9016 pedicle screws were inserted,with 82 screws identified as malplaced in 52 patients.Of these,46 patients required URTT due to screw malplacement,with 37 returning within 90 days(URTT90).Patients with both AP and lateral imaging saved intraoperatively had significantly lower URTT90 rates compared to those with only lateral imaging saved,demonstrating the critical role of imaging adequacy in improving surgical outcomes.CONCLUSION This study underscores that comprehensive intraoperative imaging with both AP and lateral views reduces unplanned returns,improves outcomes,enhances precision,and offers a cost-effective approach for better spinal surgery results.
文摘Chronic otitis media(COM)is a long-standing inflammatory condition affecting the middle ear and mastoid cavity,often resulting in progressive structural damage and functional deficits.Radiological imaging is fundamental in diagnosing the disease,assessing its severity,and identifying possible complications.The literature indicates that the prevalence rates of extracranial and intracranial complications range from 0.69% to 5%,while the mortality rate for intracranial complications is 26%.While magnetic resonance imaging is particularly useful in distinguishing soft tissue abnormalities and detecting intracranial extensions like meningitis,brain abscess,and sigmoid sinus thrombosis,highresolution computed tomography remains the preferred modality for evaluating bony erosion,cholesteatoma,and mastoid involvement.Key complications such as ossicular chain destruction,facial nerve damage,and labyrinthine fistulae can be precisely identified using advanced imaging modalities,allowing for timely and effective surgical intervention.This minireview underscores the essential role of radiology in both diagnosing and managing COM,highlighting critical imaging findings that facilitate early detection and inform treatment decisions.A collaborative approach among radiologists,otolaryngologists,and infectious disease specialists is crucial for improving clinical outcomes in affected patients.
基金supported by National Natural Science Foundation of China(Nos.32371433 and W2411083)the National Key Research and Development Program of China(No.2022YFB3203800)+4 种基金Guang Dong Basic and Applied Basic Research Foundation(No.2023A1515030207)Key Research and Development Program of Shaanxi(No.2024SF2-GJHX-30)Innovation Capability Support Program of Shaanxi(No.2022TD-52)Dual-chain Integration Special Program of Qin Chuang Yuan Construction(No.23LLRH0070)Xidian University Specially Funded Project for Interdisciplinary Exploration(Nos.TZJH2024035,TZJH2024031)。
文摘Although aggregation-induced emission(AIE) units enabled fluorophores as rotor-based probes for advancing biomedical imaging,the quantum-mechanism through which AIEgens enhanced fluorescence via aggregation or rotor effects remains poorly understood.Herein,we elucidate the mechanisms governing the tetraphenylethene(TPE)'s function(rotor-effect or aggregation-effect) in cyanine systems by tuning the methine-chain length from Cy3 to Cy5 to Cy7.Our study shows that modulating the frontier orbital energy difference(ΔE(DA)) between the cyanine and TPE allows TPE to display AIE property in Cy3,act as a rotor in Cy5 uniquely devoid of aggregation activation,or neither in Cy7.In vitro and in vivo results further demonstrate that rotor-specific TPE-Cy5 can serve as a sensitive probe for imaging tumor rigidity.We anticipate that continued advancements in TPE rotor visualization will open new avenues for understanding the biophysical behaviors of tumors.
文摘Objective:To explore the value of multimodal MRI enhancement scanning and diffusion-weighted imaging in differentiating non-puerperal mastitis(NPM)and breast cancer.Methods:From September 2022 to September 2024,56 patients with breast diseases were selected as samples and grouped according to disease type.Twenty-eight patients with breast cancer were included in Group A,and 28 patients with NPM were included in Group B.All patients underwent multimodal MRI enhancement scanning and diffusion-weighted imaging.The MRI results,time-signal intensity curves,ADC values,lesion intensity,and imaging signs were compared between the two groups.Results:There were no significant differences in enhancement characteristics,lymph node enlargement,and margins between Group A and Group B(P>0.05).The proportion of outflow curves in Group A was higher than that in Group B(P<0.05).The ADC value in Group A was lower than that in Group B,and the lesion intensity was higher than that in Group B(P<0.05).There were significant differences in imaging signs,such as abscess or sinus,ascending time-signal curve,and mammary duct dilation between Group A and Group B(P<0.05).Conclusion:Multimodal MRI enhancement scanning and diffusion-weighted imaging techniques can be used to diagnose breast diseases.Comprehensive analysis of time-signal intensity curves,lesion intensity,imaging signs,and ADC values can differentiate between NPM and breast cancer.
基金National Key Research and Development Program of China(2022YFC 3602400)Shanghai Municipal Health Commission“Top Priority Research Center”(2023-ZZ02021)+2 种基金Shanghai Public Health Key Discipline Construction Project(GWVI-11.1-26)Shanghai Academic/Technology Research Leader(21XD1432100)Key Research and Development Program of Shandong Province(2021SFGC0503)。
文摘Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in tumor patients,noninvasive imaging technologies play pivotal roles in the risk stratification,early diagnosis,monitoring and follow-up for CTR-CVT.In recent years,the field of cardio-oncology has witnessed continual updates in diagnostic and therapeutic strategies,with several pertinent guidelines and expert consensus documents issued in China and abroad.However,there remains a conspicuous absence of systematic guidance documents on the application of imaging techniques in the clinical practice of cardio-oncology.Therefore,the Chinese Anti-Cancer Association Society of Integrative Cardio-oncology,the Ultrasound Branch of the Chinese Medical Association,and the Chinese Society of Echocardiography convened experts to formulate the"Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity".Building upon the systematic evaluation of guidelines and the latest evidence-based medical research in the field of cardio-oncology domestically and abroad,and in conjunction with data derived from evidence-based medical research in China,this guideline proposes noninvasive imaging examination methods and monitoring strategies for CTR-CVT,aiming to further standardize and guide the clinical practice of multidisciplinary physicians specializing in cardio-oncology in China.