Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardi...Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.展开更多
Short Message Service(SMS)is a widely used and cost-effective communication medium that has unfortunately become a frequent target for unsolicited messages-commonly known as SMS spam.With the rapid adoption of smartph...Short Message Service(SMS)is a widely used and cost-effective communication medium that has unfortunately become a frequent target for unsolicited messages-commonly known as SMS spam.With the rapid adoption of smartphones and increased Internet connectivity,SMS spam has emerged as a prevalent threat.Spammers have recognized the critical role SMS plays in today’s modern communication,making it a prime target for abuse.As cybersecurity threats continue to evolve,the volume of SMS spam has increased substantially in recent years.Moreover,the unstructured format of SMS data creates significant challenges for SMS spam detection,making it more difficult to successfully combat spam attacks.In this paper,we present an optimized and fine-tuned transformer-based Language Model to address the problem of SMS spam detection.We use a benchmark SMS spam dataset to analyze this spam detection model.Additionally,we utilize pre-processing techniques to obtain clean and noise-free data and address class imbalance problem by leveraging text augmentation techniques.The overall experiment showed that our optimized fine-tuned BERT(Bidirectional Encoder Representations from Transformers)variant model RoBERTa obtained high accuracy with 99.84%.To further enhance model transparency,we incorporate Explainable Artificial Intelligence(XAI)techniques that compute positive and negative coefficient scores,offering insight into the model’s decision-making process.Additionally,we evaluate the performance of traditional machine learning models as a baseline for comparison.This comprehensive analysis demonstrates the significant impact language models can have on addressing complex text-based challenges within the cybersecurity landscape.展开更多
Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable se...Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.展开更多
This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the tw...This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.展开更多
Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radio...Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.展开更多
In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the...In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the test image is defective or not, and the binary representation of the defective images is obtained, according to the global coefficient feature. Owing to the requirements for the efficiency and detecting quality, the block proximal gradient operator is introduced to speed up the online dictionary learning. Considering the correlation among the testing samples, prior knowledge is applied in the orthogonal-matching-pursuit sparse representation algorithm to improve the speed of sparse coding. Experimental results demonstrate that the proposed detection method can effectively detect and extract the defects of the surface images, and has broad applicability.展开更多
Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the re...Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.展开更多
An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous m...An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.展开更多
SMS spam poses a significant challenge to maintaining user privacy and security.Recently,spammers have employed fraudulent writing styles to bypass spam detection systems.This paper introduces a novel two-level detect...SMS spam poses a significant challenge to maintaining user privacy and security.Recently,spammers have employed fraudulent writing styles to bypass spam detection systems.This paper introduces a novel two-level detection system that utilizes deep learning techniques for effective spam identification to address the challenge of sophisticated SMS spam.The system comprises five steps,beginning with the preprocessing of SMS data.RoBERTa word embedding is then applied to convert text into a numerical format for deep learning analysis.Feature extraction is performed using a Convolutional Neural Network(CNN)for word-level analysis and a Bidirectional Long Short-Term Memory(BiLSTM)for sentence-level analysis.The two-level feature extraction enables a complete understanding of individual words and sentence structure.The novel part of the proposed approach is the Hierarchical Attention Network(HAN),which fuses and selects features at two levels through an attention mechanism.The HAN can deal with words and sentences to focus on the most pertinent aspects of messages for spam detection.This network is productive in capturing meaningful features,considering both word-level and sentence-level semantics.In the classification step,the model classifies the messages into spam and ham.This hybrid deep learning method improve the feature representation,and enhancing the model’s spam detection capabilities.By significantly reducing the incidence of SMS spam,our model contributes to a safer mobile communication environment,protecting users against potential phishing attacks and scams,and aiding in compliance with privacy and security regulations.This model’s performance was evaluated using the SMS Spam Collection Dataset from the UCI Machine Learning Repository.Cross-validation is employed to consider the dataset’s imbalanced nature,ensuring a reliable evaluation.The proposed model achieved a good accuracy of 99.48%,underscoring its efficiency in identifying SMS spam.展开更多
文摘Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.
文摘Short Message Service(SMS)is a widely used and cost-effective communication medium that has unfortunately become a frequent target for unsolicited messages-commonly known as SMS spam.With the rapid adoption of smartphones and increased Internet connectivity,SMS spam has emerged as a prevalent threat.Spammers have recognized the critical role SMS plays in today’s modern communication,making it a prime target for abuse.As cybersecurity threats continue to evolve,the volume of SMS spam has increased substantially in recent years.Moreover,the unstructured format of SMS data creates significant challenges for SMS spam detection,making it more difficult to successfully combat spam attacks.In this paper,we present an optimized and fine-tuned transformer-based Language Model to address the problem of SMS spam detection.We use a benchmark SMS spam dataset to analyze this spam detection model.Additionally,we utilize pre-processing techniques to obtain clean and noise-free data and address class imbalance problem by leveraging text augmentation techniques.The overall experiment showed that our optimized fine-tuned BERT(Bidirectional Encoder Representations from Transformers)variant model RoBERTa obtained high accuracy with 99.84%.To further enhance model transparency,we incorporate Explainable Artificial Intelligence(XAI)techniques that compute positive and negative coefficient scores,offering insight into the model’s decision-making process.Additionally,we evaluate the performance of traditional machine learning models as a baseline for comparison.This comprehensive analysis demonstrates the significant impact language models can have on addressing complex text-based challenges within the cybersecurity landscape.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(GPIP:71-829-2024).
文摘Email communication plays a crucial role in both personal and professional contexts;however,it is frequently compromised by the ongoing challenge of spam,which detracts from productivity and introduces considerable security risks.Current spam detection techniques often struggle to keep pace with the evolving tactics employed by spammers,resulting in user dissatisfaction and potential data breaches.To address this issue,we introduce the Divide and Conquer-Generative Adversarial Network Squeeze and Excitation-Based Framework(DaC-GANSAEBF),an innovative deep-learning model designed to identify spam emails.This framework incorporates cutting-edge technologies,such as Generative Adversarial Networks(GAN),Squeeze and Excitation(SAE)modules,and a newly formulated Light Dual Attention(LDA)mechanism,which effectively utilizes both global and local attention to discern intricate patterns within textual data.This approach significantly improves efficiency and accuracy by segmenting scanned email content into smaller,independently evaluated components.The model underwent training and validation using four publicly available benchmark datasets,achieving an impressive average accuracy of 98.87%,outperforming leading methods in the field.These findings underscore the resilience and scalability of DaC-GANSAEBF,positioning it as a viable solution for contemporary spam detection systems.The framework can be easily integrated into existing technologies to enhance user security and reduce the risks associated with spam.
文摘This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.
文摘Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ14F030001)
文摘In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the test image is defective or not, and the binary representation of the defective images is obtained, according to the global coefficient feature. Owing to the requirements for the efficiency and detecting quality, the block proximal gradient operator is introduced to speed up the online dictionary learning. Considering the correlation among the testing samples, prior knowledge is applied in the orthogonal-matching-pursuit sparse representation algorithm to improve the speed of sparse coding. Experimental results demonstrate that the proposed detection method can effectively detect and extract the defects of the surface images, and has broad applicability.
基金National Natural Science Foundation of China(61632003).
文摘Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.
基金Funded by the National Natural Science Foundation of China (No. 51001037)the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2013003)
文摘An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.
文摘SMS spam poses a significant challenge to maintaining user privacy and security.Recently,spammers have employed fraudulent writing styles to bypass spam detection systems.This paper introduces a novel two-level detection system that utilizes deep learning techniques for effective spam identification to address the challenge of sophisticated SMS spam.The system comprises five steps,beginning with the preprocessing of SMS data.RoBERTa word embedding is then applied to convert text into a numerical format for deep learning analysis.Feature extraction is performed using a Convolutional Neural Network(CNN)for word-level analysis and a Bidirectional Long Short-Term Memory(BiLSTM)for sentence-level analysis.The two-level feature extraction enables a complete understanding of individual words and sentence structure.The novel part of the proposed approach is the Hierarchical Attention Network(HAN),which fuses and selects features at two levels through an attention mechanism.The HAN can deal with words and sentences to focus on the most pertinent aspects of messages for spam detection.This network is productive in capturing meaningful features,considering both word-level and sentence-level semantics.In the classification step,the model classifies the messages into spam and ham.This hybrid deep learning method improve the feature representation,and enhancing the model’s spam detection capabilities.By significantly reducing the incidence of SMS spam,our model contributes to a safer mobile communication environment,protecting users against potential phishing attacks and scams,and aiding in compliance with privacy and security regulations.This model’s performance was evaluated using the SMS Spam Collection Dataset from the UCI Machine Learning Repository.Cross-validation is employed to consider the dataset’s imbalanced nature,ensuring a reliable evaluation.The proposed model achieved a good accuracy of 99.48%,underscoring its efficiency in identifying SMS spam.