Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance b...Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.展开更多
A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing m...A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.展开更多
Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the re...Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.展开更多
An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a ...An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a series of layered textures (LTs) with each onehaving the same displacement for all its texels. Meanwhile, some texels of the layered textures areinterpolated for obtaining a continuous 3D approximation of the model represented in the depthimage. Thus, the plane-to-plane texture mapping can be used to map these layered textures to producenovel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task ofhole-filling in the rendering stage. Experimental results show the new method can producehigh-quality images and run faster than many famous image-based rendering techniques.展开更多
Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardi...Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.展开更多
This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the tw...This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.展开更多
Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radio...Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.展开更多
In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the...In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the test image is defective or not, and the binary representation of the defective images is obtained, according to the global coefficient feature. Owing to the requirements for the efficiency and detecting quality, the block proximal gradient operator is introduced to speed up the online dictionary learning. Considering the correlation among the testing samples, prior knowledge is applied in the orthogonal-matching-pursuit sparse representation algorithm to improve the speed of sparse coding. Experimental results demonstrate that the proposed detection method can effectively detect and extract the defects of the surface images, and has broad applicability.展开更多
An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous m...An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.展开更多
With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mo...With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.展开更多
Background Physics-based differentiable rendering(PBDR)aims to propagate gradients from scene parameters to image pixels or vice versa.The physically correct gradients obtained can be used in various applications,incl...Background Physics-based differentiable rendering(PBDR)aims to propagate gradients from scene parameters to image pixels or vice versa.The physically correct gradients obtained can be used in various applications,including inverse rendering and machine learning.Currently,two categories of methods are prevalent in the PBDR community:reparameterization and boundary sampling methods.The state-of-the-art boundary sampling methods rely on a guiding structure to calculate the gradients efficiently.They utilize the rays generated in traditional path-tracing methods and project them onto the object silhouette boundary to initialize the guiding structure.Methods In this study,we propose an augmentation of previous projective-sampling-based boundary-sampling methods in a bidirectional manner.Specifically,we utilize the rays spawned from the sensors and also employ the rays emitted by the emitters to initialize the guiding structure.Results To demonstrate the benefits of our technique,we perform a comparative analysis of differentiable rendering and inverse rendering performance.We utilize a range of synthetic scene examples and evaluate our method against state-of-the-art projective-sampling-based differentiable rendering methods.Conclusions The experiments show that our method achieves lower variance gradients in the forward differentiable rendering process and better geometry reconstruction quality in the inverse-rendering results.展开更多
Currently,the main idea of iterative rendering methods is to allocate a fixed number of samples to pixels that have not been fully rendered by calculating the completion rate.It is obvious that this strategy ignores t...Currently,the main idea of iterative rendering methods is to allocate a fixed number of samples to pixels that have not been fully rendered by calculating the completion rate.It is obvious that this strategy ignores the changes in pixel values during the previous rendering process,which may result in additional iterative operations.展开更多
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a...The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.展开更多
High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a ...High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a custom-designed hybrid electrovibration and mechanical vibration(HEM)device.An electrovibration and mechanical vibration(EMV)algorithm that renders 3D gratings with different physical heights was proposed and shown to achieve 81%accuracy in shape recognition.Models of tactile rendering fidelity were established based on the evaluation of the height discrimination threshold,and the psychophysical-physical relationships between the discrimination and reference heights were well described by a modification of Weber’s law,with correlation coefficients higher than 0.9.The physiological-physical relationship between the pulse firing rate and the physical stimulation voltage was modeled using the Izhikevich spiking model with a logarithmic relationship.展开更多
The utilization of phosphors that achieve full-spectrum lighting has emerged as a prevailing trend in the advancement of white light-emitting diode(WLED)lighting.In this study,we successfully prepared a novel green ph...The utilization of phosphors that achieve full-spectrum lighting has emerged as a prevailing trend in the advancement of white light-emitting diode(WLED)lighting.In this study,we successfully prepared a novel green phosphor Ba_(2)Sc_(2)((BO_(3))_(2)B_(2)O_(5)):Ce^(3+)(BSBO:Ce^(3+))that can be utilized for full-spectrum lighting and low-temperature sensors.BSBO:Ce^(3+)exhibits a broad-band excitation spectrum centered at 410 nm,and a broad-band emission spectrum centered at 525 nm.The internal and external quantum efficiencies of BSBO:Ce^(3+)are 99%and 49%,respectively.The thermal stability of BSBO:Ce^(3+)can be improved by substituting partial Sc atoms with smaller cations.The thermal quenching mechanism of BSBO:Ce^(3+)and the lattice occupancy of Ce ions in BSBO are discussed in detail.Furthermore,by combining the green phosphor BSBO:Ce^(3+),the commercial blue phosphor and the red phosphor on a 405 nm chip,a white light source was obtained with a high average color rendering index(CRI)of 96.6,a low correlated color temperature(CCT)of 3988 K,and a high luminous efficacy of 88.0 Im/W.The lu-minous efficacy of the WLED exhibits negligible degradation during the 1000 h light aging experiment.What's more,an emission peak at 468 nm appears when excited at 352 nm and 80 K,however,the relative intensity of the peaks at 468 and 525 nm gradually weakens with increasing temperature,indicating the potential of this material as a low-temperature sensor.展开更多
渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲...渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。展开更多
Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key...Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.展开更多
基金Supported by the Bavarian Academic Forum(BayWISS),as a part of the joint academic partnership digitalization program.
文摘Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and entertainment.However,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains challenging.Methods This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and VR.Therefore,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image graph.Using this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of views.The rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image graph.The detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in real-time.In addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light intensities.Results Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,respectively.While achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering approaches.Conclusions Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR environments.Nevertheless,the handling of morphing artifacts in the parallax image regions remains a topic for future research.
基金Project supported by the National Natural Science Foundation of China (No 60802013)the Natural Science Foundation of Zhe-jiang Province, China (No Y106574)
文摘A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.
基金National Natural Science Foundation of China(61632003).
文摘Image-based rendering is important both in the field of computer graphics and computer vision,and it is also widely used in virtual reality technology.For more than two decades,people have done a lot of work on the research of image-based rendering,and these methods can be divided into two categories according to whether the geometric information of the scene is utilized.According to this classification,we introduce some classical methods and representative methods proposed in recent years.We also compare and analyze the basic principles,advantages and disadvantages of different methods.Finally,some suggestions are given for research directions on image-based rendering techniques in the future.
文摘An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a series of layered textures (LTs) with each onehaving the same displacement for all its texels. Meanwhile, some texels of the layered textures areinterpolated for obtaining a continuous 3D approximation of the model represented in the depthimage. Thus, the plane-to-plane texture mapping can be used to map these layered textures to producenovel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task ofhole-filling in the rendering stage. Experimental results show the new method can producehigh-quality images and run faster than many famous image-based rendering techniques.
文摘Background:Irregular heartbeats can have serious health implications if left undetected and untreated for an extended period of time.Methods:This study leverages machine learning(ML)techniques to classify electrocardiogram(ECG)heartbeats,comparing traditional feature-based ML methods with innovative image-based approaches.The dataset underwent rigorous preprocessing,including down-sampling,frequency filtering,beat segmentation,and normalization.Two methodologies were explored:(1)handcrafted feature extraction,utilizing metrics like heart rate variability and RR distances with LightGBM classifiers,and(2)image transformation of ECG signals using Gramian Angular Field(GAF),Markov Transition Field(MTF),and Recurrence Plot(RP),enabling multimodal input for convolutional neural networks(CNNs).The Synthetic Minority Oversampling Technique(SMOTE)addressed data imbalance,significantly improving minority-class metrics.Results:The handcrafted feature approach achieved notable performance,with LightGBM excelling in precision and recall.Image-based classification further enhanced outcomes,with a custom Inception-based CNN,attaining an 85%F1 score and 97%accuracy using combined GAF,MTF,and RP transformations.Statistical analyses confirmed the significance of these improvements.Conclusion:This work highlights the potential of ML for cardiac irregularities detection,demonstrating that combining advanced preprocessing,feature engineering,and state-of-the-art neural networks can improve classification accuracy.These findings contribute to advancing AI-driven diagnostic tools,offering promising implications for cardiovascular healthcare.
文摘This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.
文摘Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ14F030001)
文摘In this paper, an efficient sparse representation-based method is presented for detecting surface defects. The proposed method uses the sparse degree of coefficient in the redundant dictionary for checking whether the test image is defective or not, and the binary representation of the defective images is obtained, according to the global coefficient feature. Owing to the requirements for the efficiency and detecting quality, the block proximal gradient operator is introduced to speed up the online dictionary learning. Considering the correlation among the testing samples, prior knowledge is applied in the orthogonal-matching-pursuit sparse representation algorithm to improve the speed of sparse coding. Experimental results demonstrate that the proposed detection method can effectively detect and extract the defects of the surface images, and has broad applicability.
基金Funded by the National Natural Science Foundation of China (No. 51001037)the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.2013003)
文摘An aluminum matrix syntactic foam, incorporated with hollow-structured fly ash particles, was fabricated by pressure infiltration technique. X-ray micro-computed tomography was used to characterize its heterogeneous microstructure three dimensionally (3D). The quantification of some microstructure features, such as content and size distribution of hollow fly ash particles, was acquired in 3D. The tomographic data were exploited as a rapid method to generate a microstructurally accurate and robust 3D meshed model. The thermal transport behavior has been modeled using a commercial finite-element code to conduct steady state analyses. Simulation of the thermal conductivity showed good correlation with experimental result.
基金Supported by the National Key R&D Program of China under grant No.2022YFB3303203the National Natural Science Foundation of China under grant No.62272275.
文摘With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.
基金Supported by National Natural Science Foundation of China(No.62072020)the Leading Talents in Innovation and Entrepreneurship of Qingdao,China(19-3-2-21-zhc).
文摘Background Physics-based differentiable rendering(PBDR)aims to propagate gradients from scene parameters to image pixels or vice versa.The physically correct gradients obtained can be used in various applications,including inverse rendering and machine learning.Currently,two categories of methods are prevalent in the PBDR community:reparameterization and boundary sampling methods.The state-of-the-art boundary sampling methods rely on a guiding structure to calculate the gradients efficiently.They utilize the rays generated in traditional path-tracing methods and project them onto the object silhouette boundary to initialize the guiding structure.Methods In this study,we propose an augmentation of previous projective-sampling-based boundary-sampling methods in a bidirectional manner.Specifically,we utilize the rays spawned from the sensors and also employ the rays emitted by the emitters to initialize the guiding structure.Results To demonstrate the benefits of our technique,we perform a comparative analysis of differentiable rendering and inverse rendering performance.We utilize a range of synthetic scene examples and evaluate our method against state-of-the-art projective-sampling-based differentiable rendering methods.Conclusions The experiments show that our method achieves lower variance gradients in the forward differentiable rendering process and better geometry reconstruction quality in the inverse-rendering results.
基金supported partially by the National Natural Science Foundation of China(No.U19A2063)the Jilin Provincial Science&Technology Development Program of China(No.20230201080GX)。
文摘Currently,the main idea of iterative rendering methods is to allocate a fixed number of samples to pixels that have not been fully rendered by calculating the completion rate.It is obvious that this strategy ignores the changes in pixel values during the previous rendering process,which may result in additional iterative operations.
基金supported by the National Natural Science(No.U19A2063)the Jilin Provincial Development Program of Science and Technology (No.20230201080GX)the Jilin Province Education Department Scientific Research Project (No.JJKH20230851KJ)。
文摘The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality.
基金Supported by the National Natural Science Foundation of China under Grants 61631010 and 61806085.
文摘High-fidelity tactile rendering offers significant potential for improving the richness and immersion of touchscreen interactions.This study focuses on a quantitative description of tactile rendering fidelity using a custom-designed hybrid electrovibration and mechanical vibration(HEM)device.An electrovibration and mechanical vibration(EMV)algorithm that renders 3D gratings with different physical heights was proposed and shown to achieve 81%accuracy in shape recognition.Models of tactile rendering fidelity were established based on the evaluation of the height discrimination threshold,and the psychophysical-physical relationships between the discrimination and reference heights were well described by a modification of Weber’s law,with correlation coefficients higher than 0.9.The physiological-physical relationship between the pulse firing rate and the physical stimulation voltage was modeled using the Izhikevich spiking model with a logarithmic relationship.
基金the National Natural Science Foundation of China(22003035,21963006,22073061)the Project of Shaanxi Province Youth Science and Technology New Star(2023KJXX-076)the National Training Program of Innovation and Entrepreneurship for Undergraduates(202314390018)。
文摘The utilization of phosphors that achieve full-spectrum lighting has emerged as a prevailing trend in the advancement of white light-emitting diode(WLED)lighting.In this study,we successfully prepared a novel green phosphor Ba_(2)Sc_(2)((BO_(3))_(2)B_(2)O_(5)):Ce^(3+)(BSBO:Ce^(3+))that can be utilized for full-spectrum lighting and low-temperature sensors.BSBO:Ce^(3+)exhibits a broad-band excitation spectrum centered at 410 nm,and a broad-band emission spectrum centered at 525 nm.The internal and external quantum efficiencies of BSBO:Ce^(3+)are 99%and 49%,respectively.The thermal stability of BSBO:Ce^(3+)can be improved by substituting partial Sc atoms with smaller cations.The thermal quenching mechanism of BSBO:Ce^(3+)and the lattice occupancy of Ce ions in BSBO are discussed in detail.Furthermore,by combining the green phosphor BSBO:Ce^(3+),the commercial blue phosphor and the red phosphor on a 405 nm chip,a white light source was obtained with a high average color rendering index(CRI)of 96.6,a low correlated color temperature(CCT)of 3988 K,and a high luminous efficacy of 88.0 Im/W.The lu-minous efficacy of the WLED exhibits negligible degradation during the 1000 h light aging experiment.What's more,an emission peak at 468 nm appears when excited at 352 nm and 80 K,however,the relative intensity of the peaks at 468 and 525 nm gradually weakens with increasing temperature,indicating the potential of this material as a low-temperature sensor.
文摘渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。
文摘Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.