Time: Sept.4-6, 2008Venue: Shenzhen Convention & Exhibition CenterSponsor: Printing and Printing Equipment Industries Association of China (PEIAC)Organizers: The Exhibition Department of
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of d...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of digital subtraction angiography image overlay tech-nology(DIT)in guiding the TIPS procedure.METHODS We conducted a retrospective analysis of patients who underwent TIPS at our hospital,comparing outcomes between an ultrasound-guided group and a DIT-guided group.Our analysis focused on the duration of the portosystemic shunt puncture,the number of punctures needed,the total surgical time,and various clinical indicators related to the surgery.RESULTS The study included 52 patients with esophagogastric varices due to chronic hepatic schistosomiasis.Results demonstrated that the DIT-guided group expe-rienced significantly shorter puncture times(P<0.001)and surgical durations(P=0.022)compared to the ultrasound-guided group.Additionally,postoperative assessments showed significant reductions in aspartate aminotransferase,B-type natriuretic peptide,and portal vein pressure in both groups.Notably,the DIT-guided group also showed significant reductions in total bilirubin(P=0.001)and alanine aminotransferase(P=0.023).CONCLUSION The use of DIT for guiding TIPS procedures highlights its potential to enhance procedural efficiency and reduce surgical times in the treatment of esophagogastric variceal bleeding in patients with chronic hepatic schistoso-miasis.展开更多
Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in...Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in tumor patients,noninvasive imaging technologies play pivotal roles in the risk stratification,early diagnosis,monitoring and follow-up for CTR-CVT.In recent years,the field of cardio-oncology has witnessed continual updates in diagnostic and therapeutic strategies,with several pertinent guidelines and expert consensus documents issued in China and abroad.However,there remains a conspicuous absence of systematic guidance documents on the application of imaging techniques in the clinical practice of cardio-oncology.Therefore,the Chinese Anti-Cancer Association Society of Integrative Cardio-oncology,the Ultrasound Branch of the Chinese Medical Association,and the Chinese Society of Echocardiography convened experts to formulate the"Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity".Building upon the systematic evaluation of guidelines and the latest evidence-based medical research in the field of cardio-oncology domestically and abroad,and in conjunction with data derived from evidence-based medical research in China,this guideline proposes noninvasive imaging examination methods and monitoring strategies for CTR-CVT,aiming to further standardize and guide the clinical practice of multidisciplinary physicians specializing in cardio-oncology in China.展开更多
The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact...The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact, quantification, rapidity, and high sensitivity, is expected to be used for auxiliary diagnosis of colorectal cancer. Herein, the differences in colorectal tissues of four pathological types were studied using this powerful technology. Polarized light imaging combined with the Mueller matrix decomposition (MMPD) method was applied to extract structural features that may be related to colorectal tumors. It demonstrated that parameters δ and θ could reflect the structural differences of colorectal tumors. Preliminary simulated experiment results revealed that the parameter δ was related to the fiber density, and the parameter θ was related to the fiber angle. Then Tamura image texture analysis was used to quantitatively describe tissues of different pathological types, and the results showed that the coarseness, contrast, directionality, and roughness of the four groups were statistically different. Texture analysis based on the quantitative data of the four dimensions could be applied for the identification of benign and malignant colorectal tumors.展开更多
Citrus anthracnose is a common fungal disease in citrus-growing areas in China,which causes very serious damage.At present,the manual management method is time-consuming and labor-consuming,which reduces the control e...Citrus anthracnose is a common fungal disease in citrus-growing areas in China,which causes very serious damage.At present,the manual management method is time-consuming and labor-consuming,which reduces the control effect of citrus anthracnose.Therefore,by designing and running the image retrieval system of citrus anthracnose,the automatic recognition and analysis of citrus anthracnose control were realized,and the control effect of citrus anthracnose was improved.In this paper,based on the self-collected and collated citrus anthracnose image database,we use three image features to realize an image retrieval system based on citrus anthracnose through SMV,AP clustering optimization.The results show that:1)In the accuracy of image feature retrieval,Gist feature extraction>cumulative color histogram>Gabor texture feature;2)In the maximum divergence diversity retrieval,semi-supervised AP clustering retrieval>AP clustering retrieval>SVM relevance feedback results>initial retrieval.3)Practice shows that this technology can reduce the workload of monitoring and management in the control process of citrus planting area,and promote the intelligent and efficient control of citrus anthracnose,which has high practical application value.展开更多
Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation....Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure.展开更多
The prerequisite for doctors to diagnose and treat patients is to be able to accurately determine the patient's physical condition, which requires the help of some medical image data to help doctors to judge. At p...The prerequisite for doctors to diagnose and treat patients is to be able to accurately determine the patient's physical condition, which requires the help of some medical image data to help doctors to judge. At present, many hospitals in China are equipped with more advanced and complete imaging equipment. The normal operation of these equipment is closely related to computer image processing technology. This technology is a new technology based on computer technology and biomedical technology. Its key role is to provide convenient conditions for doctors to carry out treatment scientifically and efficiently, and improve the comprehensive service level of the hospital. This paper analyzes and studies the progress and application of computer image processing technology in medical imaging.展开更多
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr...This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.展开更多
Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can impr...Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.展开更多
With the reform and opening up entering a new era,China’s modern civilization and technology are“rolling forward”.In the medical field,innovative changes in radiology imaging technology have presented unprecedented...With the reform and opening up entering a new era,China’s modern civilization and technology are“rolling forward”.In the medical field,innovative changes in radiology imaging technology have presented unprecedented value opportunities in tumor diagnosis.Therefore,this article explores the classification of radiological imaging techniques,specifically including X-ray imaging,Computed Tomography(CT),Magnetic Resonance Imaging(MRI),Positron Emission Tomography(PET),and ultrasound imaging.Furthermore,it analyzes the practical application of these key technologies in tumor diagnosis and propose new ideas.In the end,the advantages and characteristics of radiology imaging technology are evaluated,and two limitations are also pointed out,which deserves profound reflection.展开更多
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m...Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.展开更多
BACKGROUND Duodenal web is a rare congenital malformation,exceedingly uncommon in adults,and often misdiagnosed due to the subtle imaging features.CASE SUMMARY By analyzing the clinical diagnosis process and various i...BACKGROUND Duodenal web is a rare congenital malformation,exceedingly uncommon in adults,and often misdiagnosed due to the subtle imaging features.CASE SUMMARY By analyzing the clinical diagnosis process and various imaging findings of a patient from our institution,this case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs,outlines its typical radiographic features,and provides a literature review on the etiology,clinical presentation,and management of this condition.CONCLUSION This case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs.展开更多
The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of differen...The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.展开更多
Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of...Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of AP typically involve the use of imaging technologies,such as computed tomography,magnetic resonance imaging,and ultrasound,and scoring systems,including Ranson,Acute Physiology and Chronic Health Evaluation II,and Bedside Index for Severity in AP scores.Computed tomography is considered the gold standard imaging modality for AP due to its high sensitivity and specificity,while magnetic resonance imaging and ultrasound can provide additional information on biliary obstruction and vascular complications.Scoring systems utilize clinical and laboratory parameters to classify AP patients into mild,moderate,or severe categories,guiding treatment decisions,such as intensive care unit admission,early enteral feeding,and antibiotic use.Despite the central role of imaging technologies and scoring systems in AP management,these methods have limitations in terms of accuracy,reproducibility,practicality and economics.Recent advancements of artificial intelligence(AI)provide new opportunities to enhance their performance by analyzing vast amounts of clinical and imaging data.AI algorithms can analyze large amounts of clinical and imaging data,identify scoring system patterns,and predict the clinical course of disease.AI-based models have shown promising results in predicting the severity and mortality of AP,but further validation and standardization are required before widespread clinical application.In addition,understanding the correlation between these three technologies will aid in developing new methods that can accurately,sensitively,and specifically be used in the diagnosis,severity prediction,and prognosis assessment of AP through complementary advantages.展开更多
By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emis...By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.展开更多
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the...To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the test well MaHW6285 are selected to carry out erosion tests with different pumping parameters. The downhole video imaging technology is used to monitor the degree of perforations erosion, and then the fracture initiation and proppant distribution of each cluster are analyzed. The results showed that proppant entered 76.7% of the perforations. The proppant was mainly distributed in a few perforation clusters, and the amount of proppant entered in most of the clusters was limited. The proppant distribution in Stage 4 was relatively uniform, and the fracture initiation of each cluster in the stage is more uniform. The proppant distribution in stages 2, 3, 5, and 6 was significantly uneven, and the uniform degree of fracture initiation in each cluster is low. More than 70% of the proppant dose in the stage entered clusters near the heel end, so the addition of diverters did not promote the uniform initiation of hydraulic fractures. There was a positive correlation between the amount of proppant added and the degree of perforations erosion, and the degree of perforations erosion ranged from 15% to 352%, with an average value of 74.5%, which was far higher than the statistical results of shale reservoir tests in North America. The use of 180° phase perforation(horizontal direction) can reduce the “Phase Bias” of perforations erosion, promote uniform perforations erosion and fluid inflow. The research results provide the basis for optimizing the pumping procedure, reducing the perforation erosion and improving the success rate of diversion.展开更多
Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization te...Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization technology. By measuring the raw images of chlorine atoms which are formed via one-photon dissociation of CF2Cl2, the speed and angular distributions can be directly obtained. The speed distribution of excited-state chlorine atoms consists of high translation energy (ET) and low ET components, which are related to direct dissociation on 3Q0 state and predissociation on the ground state induced by internal conversion, respectively. The speed distribution of ground-state chlorine atoms also consists of high ET and low ET components which are related to predissociation between 3Q0 and 1Q1 states and predissociation on the ground state induced by internal conversion, respectively. Radical dissociation channel is confirmed, nevertheless, secondary dissociation and three-body dissociation channels are excluded.展开更多
Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the s...Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.展开更多
To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Inf...To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.展开更多
文摘Time: Sept.4-6, 2008Venue: Shenzhen Convention & Exhibition CenterSponsor: Printing and Printing Equipment Industries Association of China (PEIAC)Organizers: The Exhibition Department of
基金Jinshan Science and Technology Committee(the data collection for this study was partially funded by the project),No.2021-3-05.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a pivotal intervention for managing esophagogastric variceal bleeding in patients with chronic hepatic schistosomiasis.AIM To evaluate the efficacy of digital subtraction angiography image overlay tech-nology(DIT)in guiding the TIPS procedure.METHODS We conducted a retrospective analysis of patients who underwent TIPS at our hospital,comparing outcomes between an ultrasound-guided group and a DIT-guided group.Our analysis focused on the duration of the portosystemic shunt puncture,the number of punctures needed,the total surgical time,and various clinical indicators related to the surgery.RESULTS The study included 52 patients with esophagogastric varices due to chronic hepatic schistosomiasis.Results demonstrated that the DIT-guided group expe-rienced significantly shorter puncture times(P<0.001)and surgical durations(P=0.022)compared to the ultrasound-guided group.Additionally,postoperative assessments showed significant reductions in aspartate aminotransferase,B-type natriuretic peptide,and portal vein pressure in both groups.Notably,the DIT-guided group also showed significant reductions in total bilirubin(P=0.001)and alanine aminotransferase(P=0.023).CONCLUSION The use of DIT for guiding TIPS procedures highlights its potential to enhance procedural efficiency and reduce surgical times in the treatment of esophagogastric variceal bleeding in patients with chronic hepatic schistoso-miasis.
基金National Key Research and Development Program of China(2022YFC 3602400)Shanghai Municipal Health Commission“Top Priority Research Center”(2023-ZZ02021)+2 种基金Shanghai Public Health Key Discipline Construction Project(GWVI-11.1-26)Shanghai Academic/Technology Research Leader(21XD1432100)Key Research and Development Program of Shandong Province(2021SFGC0503)。
文摘Cardiovascular damage caused by cancer treatment has become an important cause of death for tumor survivors.With the recognition of cardiovascular diseases and cancer therapy-related cardiovascular toxicity(CTR-CVT)in tumor patients,noninvasive imaging technologies play pivotal roles in the risk stratification,early diagnosis,monitoring and follow-up for CTR-CVT.In recent years,the field of cardio-oncology has witnessed continual updates in diagnostic and therapeutic strategies,with several pertinent guidelines and expert consensus documents issued in China and abroad.However,there remains a conspicuous absence of systematic guidance documents on the application of imaging techniques in the clinical practice of cardio-oncology.Therefore,the Chinese Anti-Cancer Association Society of Integrative Cardio-oncology,the Ultrasound Branch of the Chinese Medical Association,and the Chinese Society of Echocardiography convened experts to formulate the"Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity".Building upon the systematic evaluation of guidelines and the latest evidence-based medical research in the field of cardio-oncology domestically and abroad,and in conjunction with data derived from evidence-based medical research in China,this guideline proposes noninvasive imaging examination methods and monitoring strategies for CTR-CVT,aiming to further standardize and guide the clinical practice of multidisciplinary physicians specializing in cardio-oncology in China.
文摘The high mortality rates of colon and rectal tumors have put forward an urgent need for rapid, sensitive, and accurate diagnosis. The polarization imaging technology, with the advantages of noninvasiveness, noncontact, quantification, rapidity, and high sensitivity, is expected to be used for auxiliary diagnosis of colorectal cancer. Herein, the differences in colorectal tissues of four pathological types were studied using this powerful technology. Polarized light imaging combined with the Mueller matrix decomposition (MMPD) method was applied to extract structural features that may be related to colorectal tumors. It demonstrated that parameters δ and θ could reflect the structural differences of colorectal tumors. Preliminary simulated experiment results revealed that the parameter δ was related to the fiber density, and the parameter θ was related to the fiber angle. Then Tamura image texture analysis was used to quantitatively describe tissues of different pathological types, and the results showed that the coarseness, contrast, directionality, and roughness of the four groups were statistically different. Texture analysis based on the quantitative data of the four dimensions could be applied for the identification of benign and malignant colorectal tumors.
基金supported in part by the National Natural Science Foundation of China under Grant 61772561in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012+2 种基金in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 209and in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013.
文摘Citrus anthracnose is a common fungal disease in citrus-growing areas in China,which causes very serious damage.At present,the manual management method is time-consuming and labor-consuming,which reduces the control effect of citrus anthracnose.Therefore,by designing and running the image retrieval system of citrus anthracnose,the automatic recognition and analysis of citrus anthracnose control were realized,and the control effect of citrus anthracnose was improved.In this paper,based on the self-collected and collated citrus anthracnose image database,we use three image features to realize an image retrieval system based on citrus anthracnose through SMV,AP clustering optimization.The results show that:1)In the accuracy of image feature retrieval,Gist feature extraction>cumulative color histogram>Gabor texture feature;2)In the maximum divergence diversity retrieval,semi-supervised AP clustering retrieval>AP clustering retrieval>SVM relevance feedback results>initial retrieval.3)Practice shows that this technology can reduce the workload of monitoring and management in the control process of citrus planting area,and promote the intelligent and efficient control of citrus anthracnose,which has high practical application value.
文摘Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure.
文摘The prerequisite for doctors to diagnose and treat patients is to be able to accurately determine the patient's physical condition, which requires the help of some medical image data to help doctors to judge. At present, many hospitals in China are equipped with more advanced and complete imaging equipment. The normal operation of these equipment is closely related to computer image processing technology. This technology is a new technology based on computer technology and biomedical technology. Its key role is to provide convenient conditions for doctors to carry out treatment scientifically and efficiently, and improve the comprehensive service level of the hospital. This paper analyzes and studies the progress and application of computer image processing technology in medical imaging.
文摘This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection.
文摘Skin imaging technologies such as dermoscopy, high-frequency ultrasound, reflective confocal microscopy and optical coherence tomography are developing rapidly in clinical application. Skin imaging technology can improve clinical diagnosis rate, and its non-invasiveness and repeatability make it occupy an irreplaceable position in clinical diagnosis. With the “booming development” of medical technology, skin imaging technology can improve clinical diagnosis rate. Researchers have made significant advances in assisting clinical diagnosis, prediction, and treatment of disease. This article reviews the application and progress of skin imaging in the diagnosis of psoriasis.
文摘With the reform and opening up entering a new era,China’s modern civilization and technology are“rolling forward”.In the medical field,innovative changes in radiology imaging technology have presented unprecedented value opportunities in tumor diagnosis.Therefore,this article explores the classification of radiological imaging techniques,specifically including X-ray imaging,Computed Tomography(CT),Magnetic Resonance Imaging(MRI),Positron Emission Tomography(PET),and ultrasound imaging.Furthermore,it analyzes the practical application of these key technologies in tumor diagnosis and propose new ideas.In the end,the advantages and characteristics of radiology imaging technology are evaluated,and two limitations are also pointed out,which deserves profound reflection.
基金Princess Nourah Bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R826),Princess Nourah Bint Abdulrahman University,Riyadh,Saudi ArabiaNorthern Border University,Saudi Arabia,for supporting this work through project number(NBU-CRP-2025-2933).
文摘Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance.
文摘BACKGROUND Duodenal web is a rare congenital malformation,exceedingly uncommon in adults,and often misdiagnosed due to the subtle imaging features.CASE SUMMARY By analyzing the clinical diagnosis process and various imaging findings of a patient from our institution,this case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs,outlines its typical radiographic features,and provides a literature review on the etiology,clinical presentation,and management of this condition.CONCLUSION This case report emphasizes the necessity of upper gastrointestinal series in diagnosing duodenal webs.
基金supported by the National Natural Science Foundation of China(42372144)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01E09)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05).
文摘The types and structures of inorganic pores are key factors in evaluations of the reservoir space and distribution characteristics of shale oil and gas.However,quantitative identification methods for pores of different inorganic components have not yet been fully developed.For this reason,a quantitative characterization method of inorganic pores using pixel information was proposed in this study.A machine learning algorithm was used to assist the field emission scanning electron microscopy(FE-SEM)image processing of shale to realize the accurate identification and quantitative characterization of inorganic pores on the surface of high-precision images of shale with a small view.Moreover,large-view image splicing technology,combined with quantitative evaluation of minerals by scanning electron microscopy(QEMSCAN)image joint characterization technology,was used to accurately analyze the distribution characteristics of inorganic pores under different mineral components.The quantitative methods of pore characteristics of different inorganic components under the pixel information of shale were studied.The results showed that(1)the Waikato Environment for Knowledge Analysis(WEKA)machine learning model can effectively identify and extract shale mineral components and inorganic pore distribution,and the large-view FE-SEM images are representative of samples at the 200μm×200μm view scale,meeting statistical requirements and eliminating the influence of heterogeneity;(2)the pores developed by different mineral components of shale had obvious differences,indicating that the development of inorganic pores is highly correlated with the properties of shale minerals themselves;and(3)the pore-forming ability of different mineral components is calculated by the quantitative method of single component pore-forming coefficient.Chlorite showed the highest pore-forming ability,followed by(in descending order)illite,pyrite,calcite,dolomite,albite,orthoclase,quartz,and apatite.This study contributes to advancing our understanding of inorganic pore characteristics in shale.
基金Fujian Provincial Health Technology Project,No.2020GGA079Natural Science Foundation of Fujian Province,No.2021J011380National Natural Science Foundation of China,No.62276146.
文摘Acute pancreatitis(AP)is a potentially life-threatening inflammatory disease of the pancreas,with clinical management determined by the severity of the disease.Diagnosis,severity prediction,and prognosis assessment of AP typically involve the use of imaging technologies,such as computed tomography,magnetic resonance imaging,and ultrasound,and scoring systems,including Ranson,Acute Physiology and Chronic Health Evaluation II,and Bedside Index for Severity in AP scores.Computed tomography is considered the gold standard imaging modality for AP due to its high sensitivity and specificity,while magnetic resonance imaging and ultrasound can provide additional information on biliary obstruction and vascular complications.Scoring systems utilize clinical and laboratory parameters to classify AP patients into mild,moderate,or severe categories,guiding treatment decisions,such as intensive care unit admission,early enteral feeding,and antibiotic use.Despite the central role of imaging technologies and scoring systems in AP management,these methods have limitations in terms of accuracy,reproducibility,practicality and economics.Recent advancements of artificial intelligence(AI)provide new opportunities to enhance their performance by analyzing vast amounts of clinical and imaging data.AI algorithms can analyze large amounts of clinical and imaging data,identify scoring system patterns,and predict the clinical course of disease.AI-based models have shown promising results in predicting the severity and mortality of AP,but further validation and standardization are required before widespread clinical application.In addition,understanding the correlation between these three technologies will aid in developing new methods that can accurately,sensitively,and specifically be used in the diagnosis,severity prediction,and prognosis assessment of AP through complementary advantages.
基金Projects(51774138,51804122,51904105)supported by the National Natural Science Foundation of ChinaProjects(E2021209148,E2021209052)supported by the Natural Science Foundation of Hebei Province,China。
文摘By utilizing wave velocity imaging technology,the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture.Based on the time series parameters of acoustic emissions(AE),joint response characteristics of the velocity field and AE during rock fracture were analyzed.Moreover,the localization effect of damage during rock fracture was explored by applying wave velocity imagings.The experimental result showed that the wave velocity imagings enable three-dimensional(3-D)visualization of the extent and spatial position of damage to the rock.A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone.AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives,respectively:the activity of cracks is strengthened,and the rate of AE events increases during rock fracture;correspondingly,the low-velocity zones are gradually aggregated and their area gradually increases.From the wave velocity imagings,the damaged zones in rock were divided into an initially damaged zone,a progressively damaged zone,and a fractured zone.During rock fracture,the progressively damaged zone and the fractured zone both develop around the initially damaged zone,showing a typical localization effect of the damage.By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings,the development of microfractures can be predicted,exerting practical significance for determining the position of the main fracture.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
基金Supported by the PetroChina–China University of Petroleum (Beijing) Strategic Cooperation Project (ZLZX2020-04)。
文摘To solve the problem that the production of Mahu conglomerate reservoir is not up to expectation after the multi-cluster plus temporary plugging fracturing technology is applied in horizontal wells, stages 2–6 in the test well MaHW6285 are selected to carry out erosion tests with different pumping parameters. The downhole video imaging technology is used to monitor the degree of perforations erosion, and then the fracture initiation and proppant distribution of each cluster are analyzed. The results showed that proppant entered 76.7% of the perforations. The proppant was mainly distributed in a few perforation clusters, and the amount of proppant entered in most of the clusters was limited. The proppant distribution in Stage 4 was relatively uniform, and the fracture initiation of each cluster in the stage is more uniform. The proppant distribution in stages 2, 3, 5, and 6 was significantly uneven, and the uniform degree of fracture initiation in each cluster is low. More than 70% of the proppant dose in the stage entered clusters near the heel end, so the addition of diverters did not promote the uniform initiation of hydraulic fractures. There was a positive correlation between the amount of proppant added and the degree of perforations erosion, and the degree of perforations erosion ranged from 15% to 352%, with an average value of 74.5%, which was far higher than the statistical results of shale reservoir tests in North America. The use of 180° phase perforation(horizontal direction) can reduce the “Phase Bias” of perforations erosion, promote uniform perforations erosion and fluid inflow. The research results provide the basis for optimizing the pumping procedure, reducing the perforation erosion and improving the success rate of diversion.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.17KJB150005 and No.17KJD510001)the Natural Science Foundation of Changzhou Institute of Technology (No.YN1507 and No.YN1611)+1 种基金Undergraduate Training Program for Innovation of Changzhou Institute of Technology (No.2017276Y)the National Natural Science Foundation of China (No.21273212)
文摘Photodissociation dynamics of dichlorodifluoromethane (CF2Cl2) around 235 nm has been studied using the time-sliced velocity map imaging technology in combination with the resonance enhanced multi-photon ionization technology. By measuring the raw images of chlorine atoms which are formed via one-photon dissociation of CF2Cl2, the speed and angular distributions can be directly obtained. The speed distribution of excited-state chlorine atoms consists of high translation energy (ET) and low ET components, which are related to direct dissociation on 3Q0 state and predissociation on the ground state induced by internal conversion, respectively. The speed distribution of ground-state chlorine atoms also consists of high ET and low ET components which are related to predissociation between 3Q0 and 1Q1 states and predissociation on the ground state induced by internal conversion, respectively. Radical dissociation channel is confirmed, nevertheless, secondary dissociation and three-body dissociation channels are excluded.
基金supported by the National Key Research and Development Program(No.2019YFB2005503)。
文摘Aiming at the problem that the lattice feature exceeds the view field of the scanning electron microscope(SEM)measuring system,a new lattice measuring method is proposed based on integral imaging technology.When the system works,the SEM measuring system is equivalent to an integral image acquisition system.Firstly,a lattice measuring method is researched based on integral imaging theory.Secondly,the system parameters are calibrated by the VLSI lattice standard.Finally,the value of the lattice standard to be tested is determined based on the calibration parameters and the lattice measuring algorithm.The experimental results show that,compared with the traditional electron microscope measurement method,the relative error of the measured value of the algorithm is maintained within 0.2%,with the same level of measurement accuracy,but it expands the field of view of the electron microscope measurement system,which is suitable for the measurement of samples under high magnification.
基金Supported by the National Key Research and Development Program of China(2016YFD0700204-02)China Agriculture Research System(CARS-36)Heilongjiang Post-doctoral Subsidy Project of China(LBH-Z17020)。
文摘To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk.