In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulat...In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated . The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained . The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.展开更多
Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematica...Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.展开更多
This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinea...This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption process.Our findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective encryption.The encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit planes.These planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant ones.The subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance security.An auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted image.Experimental results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical images.As a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted images.Additionally,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,respectively.Furthermore,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.展开更多
The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remot...The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection.展开更多
【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data...【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.展开更多
BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is a highly prevalent sleep-related respiratory disorder associated with serious health risks.Although polysomnography is the clinical gold standard for diagn...BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is a highly prevalent sleep-related respiratory disorder associated with serious health risks.Although polysomnography is the clinical gold standard for diagnosis,it is expensive,in-convenient,and unsuitable for population-level screening due to the need for professional scoring and overnight monitoring.AIM To address these limitations,this review aims to systematically analyze recent ad-vances in deep learning–based OSAHS detection methods using snoring sounds,particularly focusing on graphical signal representations and network architec-tures.METHODS A comprehensive literature search was conducted following the PRISMA 2009 guidelines,covering publications from 2010 to 2025.Studies were included based on predefined criteria involving the use of deep learning models on snoring sounds transformed into graphical representations such as spectrograms and scalograms.A total of 14 studies were selected for in-depth analysis.RESULTS This review summarizes the types of signal modalities,datasets,feature extraction methods,and classification frameworks used in the current literatures.The strengths and limitations of different deep network architectures are evaluated.CONCLUSION Challenges such as dataset variability,generalizability,model interpretability,and deployment feasibility are also discussed.Future directions highlight the importance of explainable artificial intelligence and domain-adaptive learning for clinically viable OSAHS diagnostic tools.展开更多
Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnosti...Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.展开更多
Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferome...Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is us...This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is used in the scrambling and diffusion stages of the algorithm.Second,in the scrambling process,the image is initially confused by Josephus scrambling,and then the image is further confused by Arnold map.Finally,generated hyperchaos sequence and exclusive OR operation is used for the image to carry on the positive and reverse diffusion to change the pixel value of the image and further hide the effective information of the image.In addition,the information of the plaintext image is used to generate keys used in the algorithm,which increases the ability of resisting plaintext attack.Experimental results and security analysis show that the scheme can effectively hide plaintext image information according to the characteristics of medical images,and is resistant to common types of attacks.In addition,this scheme performs well in the experiments of robustness,which shows that the scheme can solve the problem of image damage in telemedicine.It has a positive significance for the future research.展开更多
This paper is devoted to introduce a novel four-dimensional memristor-involved system and its applications in image encryption and chaotic circuit. The typical dynamical behaviors of the memristor-involved system are ...This paper is devoted to introduce a novel four-dimensional memristor-involved system and its applications in image encryption and chaotic circuit. The typical dynamical behaviors of the memristor-involved system are explored, such as chaotic phase potraits, Lyapunov exponent spectrum(LES), bifurcation diagram(BD) and complexity analysis. Then a color image encryption algorithm is designed. In this algorithm, the sequences generated by the four-dimensional memristor-involved system are used in scrambling and diffusion algorithm for three channels.展开更多
With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image t...With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-base...With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-based,and machine learning-based estimation.Since the machine learning-based method can lead to better performance,in this paper,a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed.First,an image fingerprint construction is proposed for training data.After the data preprocessing,the training data matrix is constructed by the cyclic shift and cubic spline interpolation.Then,the linear mapping and the gray-color transformation method are proposed to form the color image fingerprint.Second,a convolutional neural network(CNN)combined with an attentionmechanism is proposed for training performance improvement.At last,an experiment is carried out to evaluate the estimation performance.Compared with the support vector machine method,CNN method and long short-term memory method,the proposed algorithm has the best load estimation performance.展开更多
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for...Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.展开更多
Artificial Intelligence(AI)Machine Learning(ML)technologies,particularly Deep Learning(DL),have demonstrated significant potential in the interpretation of Remote Sensing(RS)imagery,covering tasks such as scene classi...Artificial Intelligence(AI)Machine Learning(ML)technologies,particularly Deep Learning(DL),have demonstrated significant potential in the interpretation of Remote Sensing(RS)imagery,covering tasks such as scene classification,object detection,land-cover/land-use classification,change detection,and multi-view stereo reconstruction.Large-scale training samples are essential for ML/DL models to achieve optimal performance.However,the current organization of training samples is ad-hoc and vendor-specific,lacking an integrated approach that can effectively manage training samples from different vendors to meet the demands of various RS AI tasks.This article proposes a solution to address these challenges by designing and implementing LuoJiaSET,a large-scale training sample database system for intelligent interpretation of RS imagery.LuoJiaSET accommodates over five million training samples,providing support for cross-dataset queries and serving as a comprehensive training data store for RS AI model training and calibration.It overcomes challenges related to label semantic categories,structural heterogeneity in label representation,and interoperable data access.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
文摘In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated . The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained . The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.
基金funded by Deanship of Research and Graduate Studies at King Khalid University.The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP.2/556/45).
文摘Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing.To address these concerns,this paper presents the mathematical and computer modeling of a novel two-dimensional(2D)chaotic system for secure key generation in quantum image encryption(QIE).The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence,named as Trigonometric-Rational-Saturation(TRS)map.Through rigorous mathematical analysis and computational simulations,the map is extensively evaluated for bifurcation behaviour,chaotic trajectories,and Lyapunov exponents.The security evaluation validates the map’s non-linearity,unpredictability,and sensitive dependence on initial conditions.In addition,the proposed TRS map has further been tested by integrating it in a QIE scheme.The QIE scheme first quantum-encodes the classic image using the Novel Enhanced Quantum Representation(NEQR)technique,the TRS map is used for the generation of secure diffusion key,which is XOR-ed with the quantum-ready image to obtain the encrypted images.The security evaluation of the QIE scheme demonstrates superior security of the encrypted images in terms of statistical security attacks and also against Differential attacks.The encrypted images exhibit zero correlation and maximum entropy with demonstrating strong resilience due to 99.62%and 33.47%results for Number of Pixels Change Rate(NPCR)and Unified Average Changing Intensity(UACI).The results validate the effectiveness of TRS-based quantum encryption scheme in securing digital images against emerging quantum threats,making it suitable for secure image encryption in IoT and edge-based applications.
文摘This paper presents a high-security medical image encryption method that leverages a novel and robust sine-cosine map.The map demonstrates remarkable chaotic dynamics over a wide range of parameters.We employ nonlinear analytical tools to thoroughly investigate the dynamics of the chaotic map,which allows us to select optimal parameter configurations for the encryption process.Our findings indicate that the proposed sine-cosine map is capable of generating a rich variety of chaotic attractors,an essential characteristic for effective encryption.The encryption technique is based on bit-plane decomposition,wherein a plain image is divided into distinct bit planes.These planes are organized into two matrices:one containing the most significant bit planes and the other housing the least significant ones.The subsequent phases of chaotic confusion and diffusion utilize these matrices to enhance security.An auxiliary matrix is then generated,comprising the combined bit planes that yield the final encrypted image.Experimental results demonstrate that our proposed technique achieves a commendable level of security for safeguarding sensitive patient information in medical images.As a result,image quality is evaluated using the Structural Similarity Index(SSIM),yielding values close to zero for encrypted images and approaching one for decrypted images.Additionally,the entropy values of the encrypted images are near 8,with a Number of Pixel Change Rate(NPCR)and Unified Average Change Intensity(UACI)exceeding 99.50%and 33%,respectively.Furthermore,quantitative assessments of occlusion attacks,along with comparisons to leading algorithms,validate the integrity and efficacy of our medical image encryption approach.
文摘The large-scale acquisition and widespread application of remote sensing image data have led to increasingly severe challenges in information security and privacy protection during transmission and storage.Urban remote sensing image,characterized by complex content and well-defined structures,are particularly vulnerable to malicious attacks and information leakage.To address this issue,the author proposes an encryption method based on the enhanced single-neuron dynamical system(ESNDS).ESNDS generates highquality pseudo-random sequences with complex dynamics and intense sensitivity to initial conditions,which drive a structure of multi-stage cipher comprising permutation,ring-wise diffusion,and mask perturbation.Using representative GF-2 Panchromatic and Multispectral Scanner(PMS)urban scenes,the author conducts systematic evaluations in terms of inter-pixel correlation,information entropy,histogram uniformity,and number of pixel change rate(NPCR)/unified average changing intensity(UACI).The results demonstrate that the proposed scheme effectively resists statistical analysis,differential attacks,and known-plaintext attacks while maintaining competitive computational efficiency for high-resolution urban image.In addition,the cipher is lightweight and hardware-friendly,integrates readily with on-board and ground processing,and thus offers tangible engineering utility for real-time,large-volume remote-sensing data protection.
基金CAMS Innovation Fund for Medical Sciences(CIFMS):“Construction of an Intelligent Management and Efficient Utilization Technology System for Big Data in Population Health Science.”(2021-I2M-1-057)Key Projects of the Innovation Fund of the National Clinical Research Center for Orthopedics and Sports Rehabilitation:“National Orthopedics and Sports Rehabilitation Real-World Research Platform System Construction”(23-NCRC-CXJJ-ZD4)。
文摘【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets.
基金Supported by the National Natural Science Foundation of China,No.11974121Talent Research Fund of Hefei University,No.24RC08.
文摘BACKGROUND Obstructive sleep apnea-hypopnea syndrome(OSAHS)is a highly prevalent sleep-related respiratory disorder associated with serious health risks.Although polysomnography is the clinical gold standard for diagnosis,it is expensive,in-convenient,and unsuitable for population-level screening due to the need for professional scoring and overnight monitoring.AIM To address these limitations,this review aims to systematically analyze recent ad-vances in deep learning–based OSAHS detection methods using snoring sounds,particularly focusing on graphical signal representations and network architec-tures.METHODS A comprehensive literature search was conducted following the PRISMA 2009 guidelines,covering publications from 2010 to 2025.Studies were included based on predefined criteria involving the use of deep learning models on snoring sounds transformed into graphical representations such as spectrograms and scalograms.A total of 14 studies were selected for in-depth analysis.RESULTS This review summarizes the types of signal modalities,datasets,feature extraction methods,and classification frameworks used in the current literatures.The strengths and limitations of different deep network architectures are evaluated.CONCLUSION Challenges such as dataset variability,generalizability,model interpretability,and deployment feasibility are also discussed.Future directions highlight the importance of explainable artificial intelligence and domain-adaptive learning for clinically viable OSAHS diagnostic tools.
基金supported by the National Natural Science Foundation of China(Grant No.12175183)。
文摘Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.
文摘Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
基金the National Natural Science Foundation of China(No.61402051)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM6076)。
文摘This study proposes a new medical image encryption scheme based on Josephus traversing and hyper-chaotic Lorenz system.First,a chaotic sequence is generated through hyperchaotic system.This hyperchaotic sequence is used in the scrambling and diffusion stages of the algorithm.Second,in the scrambling process,the image is initially confused by Josephus scrambling,and then the image is further confused by Arnold map.Finally,generated hyperchaos sequence and exclusive OR operation is used for the image to carry on the positive and reverse diffusion to change the pixel value of the image and further hide the effective information of the image.In addition,the information of the plaintext image is used to generate keys used in the algorithm,which increases the ability of resisting plaintext attack.Experimental results and security analysis show that the scheme can effectively hide plaintext image information according to the characteristics of medical images,and is resistant to common types of attacks.In addition,this scheme performs well in the experiments of robustness,which shows that the scheme can solve the problem of image damage in telemedicine.It has a positive significance for the future research.
基金supported by the National Natural Science Foundation of China(No.62061014)the Natural Science Fou ndation of Gansu Province(No.22JR11RG223)the President Fund Innovation Team Project of Hexi University(No.CXTD2022003)。
文摘This paper is devoted to introduce a novel four-dimensional memristor-involved system and its applications in image encryption and chaotic circuit. The typical dynamical behaviors of the memristor-involved system are explored, such as chaotic phase potraits, Lyapunov exponent spectrum(LES), bifurcation diagram(BD) and complexity analysis. Then a color image encryption algorithm is designed. In this algorithm, the sequences generated by the four-dimensional memristor-involved system are used in scrambling and diffusion algorithm for three channels.
基金supported in part by collaborative research with Toyota Motor Corporation,in part by ROIS NII Open Collaborative Research under Grant 21S0601,in part by JSPS KAKENHI under Grants 20H00592,21H03424.
文摘With the rapid development of artificial intelligence and the widespread use of the Internet of Things, semantic communication, as an emerging communication paradigm, has been attracting great interest. Taking image transmission as an example, from the semantic communication's view, not all pixels in the images are equally important for certain receivers. The existing semantic communication systems directly perform semantic encoding and decoding on the whole image, in which the region of interest cannot be identified. In this paper, we propose a novel semantic communication system for image transmission that can distinguish between Regions Of Interest (ROI) and Regions Of Non-Interest (RONI) based on semantic segmentation, where a semantic segmentation algorithm is used to classify each pixel of the image and distinguish ROI and RONI. The system also enables high-quality transmission of ROI with lower communication overheads by transmissions through different semantic communication networks with different bandwidth requirements. An improved metric θPSNR is proposed to evaluate the transmission accuracy of the novel semantic transmission network. Experimental results show that our proposed system achieves a significant performance improvement compared with existing approaches, namely, existing semantic communication approaches and the conventional approach without semantics.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
文摘With the rapid development of electric power systems,load estimation plays an important role in system operation and planning.Usually,load estimation techniques contain traditional,time series,regression analysis-based,and machine learning-based estimation.Since the machine learning-based method can lead to better performance,in this paper,a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed.First,an image fingerprint construction is proposed for training data.After the data preprocessing,the training data matrix is constructed by the cyclic shift and cubic spline interpolation.Then,the linear mapping and the gray-color transformation method are proposed to form the color image fingerprint.Second,a convolutional neural network(CNN)combined with an attentionmechanism is proposed for training performance improvement.At last,an experiment is carried out to evaluate the estimation performance.Compared with the support vector machine method,CNN method and long short-term memory method,the proposed algorithm has the best load estimation performance.
基金financially supported by the National Council for Scientific and Technological Development(CNPq,Brazil),Swedish-Brazilian Research and Innovation Centre(CISB),and Saab AB under Grant No.CNPq:200053/2022-1the National Council for Scientific and Technological Development(CNPq,Brazil)under Grants No.CNPq:312924/2017-8 and No.CNPq:314660/2020-8.
文摘Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.
基金supported by the National Natural Science Foundation of China[grant number 42071354]supported by the Fundamental Research Funds for the Central Universities[grant number 2042022dx0001]supported by the Fundamental Research Funds for the Central Universities[grant number WUT:223108001].
文摘Artificial Intelligence(AI)Machine Learning(ML)technologies,particularly Deep Learning(DL),have demonstrated significant potential in the interpretation of Remote Sensing(RS)imagery,covering tasks such as scene classification,object detection,land-cover/land-use classification,change detection,and multi-view stereo reconstruction.Large-scale training samples are essential for ML/DL models to achieve optimal performance.However,the current organization of training samples is ad-hoc and vendor-specific,lacking an integrated approach that can effectively manage training samples from different vendors to meet the demands of various RS AI tasks.This article proposes a solution to address these challenges by designing and implementing LuoJiaSET,a large-scale training sample database system for intelligent interpretation of RS imagery.LuoJiaSET accommodates over five million training samples,providing support for cross-dataset queries and serving as a comprehensive training data store for RS AI model training and calibration.It overcomes challenges related to label semantic categories,structural heterogeneity in label representation,and interoperable data access.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.