Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the sa...Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.展开更多
AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in ...AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca,Romania,between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images,corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms,applying the standard boxcounting method. Statistical analyses were performed using the Graph Pad In Stat software.RESULTS:The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα=α_(max)-α_(min))and the spectrum arms' heights difference(│Δf│)of the normal images were expressed as mean±standard deviation(SD):for segmented versions,D_0=1.7014±0.0057; D_1=1.6507±0.0058; D_2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions,D_0=1.6303±0.0051; D_1=1.6012±0.0059; D_2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα)and the spectrum arms' heights difference(│Δf│)of the segmented versions was slightly greater than the skeletonised versions.CONCLUSION:The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.展开更多
基金supported by the National Natural Science Foundation of China(51774196,52304093)China Postdoctoral Science Foundation(2023M741968)Shandong Provincial Natural Science Foundation(ZR2023ME086).
文摘Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.
基金the Program"Partnerships in priority domains"with the support of the National Education Ministry,the Executive Agency for Higher Education,Research,Development and Innovation Funding (UEFISCDI),Romania (Project code:PN-II-PT-PCCA-2013-4-1232)
文摘AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca,Romania,between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images,corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms,applying the standard boxcounting method. Statistical analyses were performed using the Graph Pad In Stat software.RESULTS:The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα=α_(max)-α_(min))and the spectrum arms' heights difference(│Δf│)of the normal images were expressed as mean±standard deviation(SD):for segmented versions,D_0=1.7014±0.0057; D_1=1.6507±0.0058; D_2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions,D_0=1.6303±0.0051; D_1=1.6012±0.0059; D_2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα)and the spectrum arms' heights difference(│Δf│)of the segmented versions was slightly greater than the skeletonised versions.CONCLUSION:The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases.