期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
EffNet-CNN:A Semantic Model for Image Mining&Content-Based Image Retrieval
1
作者 Rajendran Thanikachalam Anandhavalli Muniasamy +1 位作者 Ashwag Alasmari Rajendran Thavasimuthu 《Computer Modeling in Engineering & Sciences》 2025年第5期1971-2000,共30页
Content-Based Image Retrieval(CBIR)and image mining are becoming more important study fields in computer vision due to their wide range of applications in healthcare,security,and various domains.The image retrieval sy... Content-Based Image Retrieval(CBIR)and image mining are becoming more important study fields in computer vision due to their wide range of applications in healthcare,security,and various domains.The image retrieval system mainly relies on the efficiency and accuracy of the classification models.This research addresses the challenge of enhancing the image retrieval system by developing a novel approach,EfficientNet-Convolutional Neural Network(EffNet-CNN).The key objective of this research is to evaluate the proposed EffNet-CNN model’s performance in image classification,image mining,and CBIR.The novelty of the proposed EffNet-CNN model includes the integration of different techniques and modifications.The model includes the Mahalanobis distance metric for feature matching,which enhances the similarity measurements.The model extends EfficientNet architecture by incorporating additional convolutional layers,batch normalization,dropout,and pooling layers for improved hierarchical feature extraction.A systematic hyperparameter optimization using SGD,performance evaluation with three datasets,and data normalization for improving feature representations.The EffNet-CNN is assessed utilizing precision,accuracy,F-measure,and recall metrics across MS-COCO,CIFAR-10 and 100 datasets.The model achieved accuracy values ranging from 90.60%to 95.90%for the MS-COCO dataset,96.8%to 98.3%for the CIFAR-10 dataset and 92.9%to 98.6%for the CIFAR-100 dataset.A validation of the EffNet-CNN model’s results with other models reveals the proposed model’s superior performance.The results highlight the potential of the EffNet-CNN model proposed for image classification and its usefulness in image mining and CBIR. 展开更多
关键词 image mining CBIR semantic features EffNet-CNN image retrieval
在线阅读 下载PDF
Design and Implementation of Verification Code Identification Based on Anisotropic Heat Kernel 被引量:2
2
作者 LIU Lizhao LIU Jian +3 位作者 DAI Yaomei XU Huarong YIN Huayi ZHU Shunzhi 《China Communications》 SCIE CSCD 2016年第1期100-112,共13页
Many websites use verification codes to prevent users from using the machine automatically to register,login,malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as ... Many websites use verification codes to prevent users from using the machine automatically to register,login,malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually.Improving the verification code security system needs the identification method as the corresponding testing system.We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom,design a multi-step anisotropic verification code identification algorithm which includes core procedure of building anisotropic heat kernel,settingwave energy information parameters,combing outverification codccharacters and corresponding peripheral procedure of gray scaling,binarizing,denoising,normalizing,segmenting and identifying,give out the detail criterion and parameter set.Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters,mathematical,Chinese,voice,3D,programming,video,advertising,it has a higher rate of 25%and 50%than neural network and context matching algorithm separately for Yahoo site,49%and 60%for Captcha site,20%and 52%for Baidu site,60%and 65%for 3DTakers site,40%,and 51%.for MDP site. 展开更多
关键词 verification code image recognition data mining scale space anisotropic heat kernel
在线阅读 下载PDF
A Computer Aided Consultant System for Mammogram Diagnosis
3
作者 Alberto Rocha TONG Fu (School of Computer Engineering and Science, Shanghai University) YAN Zhuang zhi (School of Biomedical Engineering, Shanghai University) 《Advances in Manufacturing》 SCIE CAS 1999年第4期293-298,共6页
A computer aided consultant system for mammogram diagnosis is proposed in this paper based on mammogram segmentation as an image mining technique, to aid radiologistis in X ray film interpretation. The general a... A computer aided consultant system for mammogram diagnosis is proposed in this paper based on mammogram segmentation as an image mining technique, to aid radiologistis in X ray film interpretation. The general architecture of the system is introduced first, followed by a discussion of mammogram segmentation using logic filter, an analysis of the statistical data to the diagnostics with respect to different clinical information, and a brief introduction to a fuzzy decision making subsystem. Finally some experimental results are given. 展开更多
关键词 mammogram image processig image data mining SEGMENTATION logic filter fuzzy diagnosis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部