Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping...Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI...In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI)data set with 2297 remote sensing images serves as a standardized high-resolution data set for studies related to remote-sensing image features.The TPI contains 1)raw and calibrated remote-sensing images with high spatial and temporal resolutions(up to 2 m and 7 days,respectively),and 2)a built-in 3-D target area model that supports view position,view angle,lighting,shadowing,and other transformations.Based on TPI,we further present a quantized approach,including the feature recurrence rate,the feature match score,and the weighted feature robustness score,to evaluate the robustness of remote-sensing image feature detectors.The quantized approach gives general and objective assessments of the robustness of feature detectors under complex remote-sensing circumstances.Three remote-sensing image feature detectors,including scale-invariant feature transform(SIFT),speeded up robust features(SURF),and priori information based robust features(PIRF),are evaluated using the proposed approach on the TPI data set.Experimental results show that the robustness of PIRF outperforms others by over 6.2%.展开更多
In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest...In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.展开更多
Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achi...Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achieved by tracking stars in the all-sky region,we propose a processing scheme to select larger-sized lunar craters near the Lunar Corner Cube Retroreflector as reference features for telescope pointing bias computation.Accurately determining the position of the craters in the images is crucial for calculating the pointing bias;therefore,we propose a method for accurately calculating the crater position based on lunar surface feature matching.This method uses matched feature points obtained from image feature matching,using a deep learning method to solve the image transformation matrix.The known position of a crater in a reference image is mapped using this matrix to calculate the crater position in the target image.We validate this method using craters near the Lunar Corner Cube Retroreflectors of Apollo 15 and Luna 17 and find that the calculated position of a crater on the target image falls on the center of the crater,even for image features with large distortion near the lunar limb.The maximum image matching error is approximately 1″,and the minimum is only 0.47″,which meets the pointing requirements of Lunar Laser Ranging.This method provides a new technical means for the high-precision pointing bias calculation of the Lunar Laser Ranging system.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in...BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in the prognostic evaluation of CRC.Laparoscopic radical resection is a common surgical approach for treating CRC.However,research on the link between preoperative imaging and short-term prognosis in this context is limited.We hypothesized that specific preope-rative imaging features can predict the short-term prognosis in patients under-going laparoscopic CRC resection.AIM To investigate the imaging features of CRC and analyze their correlation with the short-term prognosis of laparoscopic radical resection.METHODS This retrospective study conducted at the Affiliated Cancer Hospital of Shandong First Medical University included 122 patients diagnosed with CRC who under-went laparoscopic radical resection between January 2021 and February 2024.All patients underwent magnetic resonance imaging(MRI)and were diagnosed with CRC through pathological examination.MRI data and prognostic indicators were collected 30 days post-surgery.Logistic regression analysis identified imaging fea-tures linked to short-term prognosis,and a receiver operating characteristic(ROC)curve was used to evaluate the predictive value.RESULTS Among 122 patients,22 had irregular,low-intensity tumors with adjacent high signals.In 55,tumors were surrounded by alternating signals in the muscle layer.In 32,tumors extended through the muscular layer and blurred boundaries with perienteric adipose tissue.Tumor signals appeared in the adjacent tissues in 13 patients with blurred gaps.Logistic regression revealed differences in longitudinal tumor length,axial tumor length,volume transfer constant,plasma volume fraction,and apparent diffusion coefficient among patients with varying prognostic results.ROC analysis indicated that the areas under the curve for these parameters were 0.648,0.927,0.821,0.809,and 0.831,respectively.Sensitivity values were 0.643,0.893,0.607,0.714,and 0.714,and specificity 0.702,0.904,0.883,0.968,and 0.894(P<0.05).CONCLUSION The imaging features of CRC correlate with the short-term prognosis following laparoscopic radical resection.These findings provide valuable insights for clinical decision-making.展开更多
The study by Luo et al published in the World Journal of Gastrointestinal Oncology presents a thorough and scientific methodology.Pancreatic cancer is the most challenging malignancy in the digestive system,exhibiting...The study by Luo et al published in the World Journal of Gastrointestinal Oncology presents a thorough and scientific methodology.Pancreatic cancer is the most challenging malignancy in the digestive system,exhibiting one of the highest mortality rates associated with cancer globally.The delayed onset of symptoms and diagnosis often results in metastasis or local progression of the cancer,thereby constraining treatment options and outcomes.For these patients,prompt tumour identification and treatment strategising are crucial.The present objective of pancreatic cancer research is to examine the correlation between various pathological types and imaging data to facilitate therapeutic decision-making.This study aims to clarify the correlation between diverse pathological markers and imaging in pancreatic cancer patients,with prospective longitudinal studies potentially providing novel insights into the diagnosis and treatment of pancreatic cancer.展开更多
Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirm...Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and 〉20 mm. Their texture features were segmented and extracted. The differences in the image features between benign and malignant SPNs were compared. The SPNs in these three groups were determined and analyzed with the texture features of images. Results: These 379 SPNs were successfully segmented using the 2D Otsu threshold method and the self-adaptive threshold segmentation method. The texture features of these SPNs were obtained using the method of grey level co-occurrence matrix (GLCM). Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. The entropy, contrast, energy, homogeneity, and correlation were 3.5597±0.6470, 0.5384±0.2561, 0.1921±0.1256, 0.8281±0.0604, and 0.8748±0.0740 in the benign SPNs and 3.8007±0.6235, 0.6088±0.2961, 0.1673±0.1070, 0.7980±0.0555, and 0.8550±0.0869 in the malignant SPNs (all P〈0.05). The sensitivity, specificity, and accuracy of the texture features of images were 83.3%, 90.0%, and 86.8%, respectively, for SPNs sized 〈10 mm, and were 86.6%, 88.2%, and 87.1%, respectively, for SPNs sized 11-20 mm and 94.7%, 91.8%, and 93.9%, respectively, for SPNs sized 〉20 mm. Conclusions: The entropy and contrast of malignant pulmonary nodules have been demonstrated to be higher in comparison to those of benign pulmonary nodules, while the energy, homogeneity correlation of malignant pulmonary nodules are lower than those of benign pulmonary nodules. The texture features of images can reflect the tissue features and have high sensitivity, specificity, and accuracy in differentiating SPNs. The sensitivity and accuracy increase for larger SPNs.展开更多
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t...In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.展开更多
We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active con...We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard devia- tion textural feature and a 5x5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the con- trast-to-gradient method. The experiments showed promising segmentation results.展开更多
In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of...In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
The fractal image encoding method has received much attention for its many advantages over other methods, such as high decoding quality at high compression ratios. However, because every range block must be compared t...The fractal image encoding method has received much attention for its many advantages over other methods, such as high decoding quality at high compression ratios. However, because every range block must be compared to all domain blocks in the codebook to find the best-matched one during the coding procedure, baseline fractal coding (BFC) is quite time consuming. To speed up fractal coding, a new fast fractal encoding algorithm is proposed. This algorithm aims at reducing the size of the search window during the domain-range matching process to minimize the computational cost. A new theorem presented in this paper shows that a special feature of the image can be used to do this work. Based on this theorem, the most inappropriate domain blocks, whose features are not similar to that of the given range block, are excluded before matching. Thus, the best-matched block can be captured much more quickly than in the BFC approach. The experimental results show that the runtime of the proposed method is reduced greatly com- pared to the BFC method. At the same time, the new algorithm also achieves high reconstructed image quality. In addition, the method can be incorporated with other fast algorithms to achieve better performance Therefore, the proposed algorithm has a much better application potential than BFC.展开更多
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin...The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.展开更多
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or disting...Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or distinguish between abnormal and normal tissues on images. In the phase of classification, a set of image features and/or texture features extracted from the images are commonly used. In this article, we investigated the characteristic of the output entropy of an image and demonstrated the usefulness of the output entropy acting as a texture feature in CAD systems. In order to validate the effectiveness and superiority of the output-entropy-based texture feature, two well-known texture features, i.e., mean and standard deviation were used for comparison. The database used in this study comprised 50 CT images obtained from 10 patients with pulmonary nodules, and 50 CT images obtained from 5 normal subjects. We used a support vector machine for classification. A leave-one-out method was employed for training and classification. Three combinations of texture features, i.e., mean and entropy, standard deviation and entropy, and standard deviation and mean were used as the inputs to the classifier. Three different regions of interest (ROI) sizes, i.e., 11 × 11, 9 × 9 and 7 × 7 pixels from the database were selected for computation of the feature values. Our experimental results show that the combination of entropy and standard deviation is significantly better than both the combination of mean and entropy and that of standard deviation and mean in the case of the ROI size of 11 × 11 pixels (p < 0.05). These results suggest that information entropy of an image can be used as an effective feature for CAD applications.展开更多
In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recog...In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recognition methods which are based on kernels or bag of features, with large margin classifier, CFI proposed in this work is based on feature matching, image similarity and clustering of features and images. It establishes independent local feature clusters by feature cloud registration to represent each room, and defines image distance to describe the similarity between images or feature clusters, which determines the label of query images. Besides, it improves recognition speed by image scaling, with state inertia and hidden Markov model constraining the transition of the state to kill unreasonable wrong recognitions and achieves remarkable precision and speed. A series of experiments are conducted to test the algorithm based on standard databases, and it achieves recognition rate up to 97% and speed is over 30 fps, which is much superior to traditional methods. Its impressive precision and speed demonstrate the great discriminative power in the face of complicated environment.展开更多
Considering the three-dimensional(3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high-and low-level features, we propose a new model called 3DMAU-Net based ...Considering the three-dimensional(3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high-and low-level features, we propose a new model called 3DMAU-Net based on the 3D U-Net architecture for liver region segmentation. Our model replaces the last two layers of the 3D U-Net with a sliding window-based multilayer perceptron(SMLP), enabling better extraction of local image features. We also design a high-and low-level feature fusion dilated convolution block that focuses on local features and better supplements the surrounding information of the target region. This block is embedded in the entire encoding process, ensuring that the overall network is not simply downsampling. Before each feature extraction, the input features are processed by the dilated convolution block. We validate our experiments on the liver tumor segmentation challenge 2017(Lits2017) dataset, and our model achieves a Dice coefficient of 0.95, which is an improvement of 0.015 compared to the 3D U-Net model. Furthermore, we compare our results with other segmentation methods, and our model consistently outperforms them.展开更多
An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular deriva...An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular derivative-based edge operators are shown to be too sensitive to edge fine-structure and to weak gradients. The new edge-detection algorithm is ICSED (Improved Cluster Shade Edge-detection) method and it is found to be an excel lent edge detector that exhibits the characteristic of fine-structure rejection while retaining edge sharpness. This char acteristic is highly desirable for analyzing oceanographic satellite images. A sorting technique for separating clouds or land well from ocean at both day and night is described in order to obtain high quality mesoscale features on the IR image This procedure is evaluated on an AVHRR (Advanced Very High Resolution Radiometer) image with Kuroshio. Results and analyses show that the mesoscale features can be well identified by using ICSED algorithm.展开更多
In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes o...In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes of primary matching suitable features(PMSFs)are designed based on the characteristics of image texture,SAR imaging and SAR matching algorithm,which is a process involving expertise;on the other hand,by designing a synthesized operation expression tree based on PMSFs,a much more flexible expression form of synthesized features is built,which greatly expands the construction space.Then,the genetic algorithm-based optimized searching process is employed to search the synthesized matching suitable feature(SMSF)with the highest effciency,largely improving the optimized searching effciency.In addition,the experimental results of the airborne synthetic aperture radar ortho-images of C-band and P-band show that the SMSFs gained via the algorithms can reflect the matching suitability of SAR images accurately and the matching probabilities of selected matching suitable areas of ortho-images could reach 99±0.5%.展开更多
基金Project (No 2008AA01Z132) supported by the National High-Tech Research and Development Program of China
文摘Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
基金the National Key Research and Development Program of China under Grant 2018YFF0301205in part by the National Natural Science Foundation of China under Grant NSFC 61925105 and Grant 61801260.
文摘In this paper,we build a remote-sensing satellite imagery priori-information data set,and propose an approach to evaluate the robustness of remote-sensing image feature detectors.The building TH Priori-Information(TPI)data set with 2297 remote sensing images serves as a standardized high-resolution data set for studies related to remote-sensing image features.The TPI contains 1)raw and calibrated remote-sensing images with high spatial and temporal resolutions(up to 2 m and 7 days,respectively),and 2)a built-in 3-D target area model that supports view position,view angle,lighting,shadowing,and other transformations.Based on TPI,we further present a quantized approach,including the feature recurrence rate,the feature match score,and the weighted feature robustness score,to evaluate the robustness of remote-sensing image feature detectors.The quantized approach gives general and objective assessments of the robustness of feature detectors under complex remote-sensing circumstances.Three remote-sensing image feature detectors,including scale-invariant feature transform(SIFT),speeded up robust features(SURF),and priori information based robust features(PIRF),are evaluated using the proposed approach on the TPI data set.Experimental results show that the robustness of PIRF outperforms others by over 6.2%.
基金The studies mentioned in this paper were supported in part by Grants R01 CA160205 and R01 CA197150 from the National Cancer Institute,National Institutes of Health,USAGrant HR15-016 from Oklahoma Center for the Advancement of Science and Technology,USA.
文摘In order to develop precision or personalized medicine,identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently.Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images,which include steps in detecting and segmenting suspicious regions or tumors,followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors.However,due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors,segmenting subtle regions is often difficult and unreliable.Additionally,ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches.In our recent studies,we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis.We trained and tested several models using images obtained from full-field digital mammography,magnetic resonance imaging,and computed tomography of breast,lung,and ovarian cancers.Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice.Furthermore,the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis.Therefore,the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.
基金funded by Natural Science Foundation of Jilin Province(20220101125JC)the National Natural Science Foundation of China(12273079).
文摘Lunar Laser Ranging has extremely high requirements for the pointing accuracy of the telescopes used.To improve its pointing accuracy and solve the problem of insufficiently accurate telescope pointing correction achieved by tracking stars in the all-sky region,we propose a processing scheme to select larger-sized lunar craters near the Lunar Corner Cube Retroreflector as reference features for telescope pointing bias computation.Accurately determining the position of the craters in the images is crucial for calculating the pointing bias;therefore,we propose a method for accurately calculating the crater position based on lunar surface feature matching.This method uses matched feature points obtained from image feature matching,using a deep learning method to solve the image transformation matrix.The known position of a crater in a reference image is mapped using this matrix to calculate the crater position in the target image.We validate this method using craters near the Lunar Corner Cube Retroreflectors of Apollo 15 and Luna 17 and find that the calculated position of a crater on the target image falls on the center of the crater,even for image features with large distortion near the lunar limb.The maximum image matching error is approximately 1″,and the minimum is only 0.47″,which meets the pointing requirements of Lunar Laser Ranging.This method provides a new technical means for the high-precision pointing bias calculation of the Lunar Laser Ranging system.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘BACKGROUND Colorectal cancer(CRC)is a malignant tumor with high morbidity and mortality rates worldwide.With the development of medical imaging technology,imaging features are playing an increasingly important role in the prognostic evaluation of CRC.Laparoscopic radical resection is a common surgical approach for treating CRC.However,research on the link between preoperative imaging and short-term prognosis in this context is limited.We hypothesized that specific preope-rative imaging features can predict the short-term prognosis in patients under-going laparoscopic CRC resection.AIM To investigate the imaging features of CRC and analyze their correlation with the short-term prognosis of laparoscopic radical resection.METHODS This retrospective study conducted at the Affiliated Cancer Hospital of Shandong First Medical University included 122 patients diagnosed with CRC who under-went laparoscopic radical resection between January 2021 and February 2024.All patients underwent magnetic resonance imaging(MRI)and were diagnosed with CRC through pathological examination.MRI data and prognostic indicators were collected 30 days post-surgery.Logistic regression analysis identified imaging fea-tures linked to short-term prognosis,and a receiver operating characteristic(ROC)curve was used to evaluate the predictive value.RESULTS Among 122 patients,22 had irregular,low-intensity tumors with adjacent high signals.In 55,tumors were surrounded by alternating signals in the muscle layer.In 32,tumors extended through the muscular layer and blurred boundaries with perienteric adipose tissue.Tumor signals appeared in the adjacent tissues in 13 patients with blurred gaps.Logistic regression revealed differences in longitudinal tumor length,axial tumor length,volume transfer constant,plasma volume fraction,and apparent diffusion coefficient among patients with varying prognostic results.ROC analysis indicated that the areas under the curve for these parameters were 0.648,0.927,0.821,0.809,and 0.831,respectively.Sensitivity values were 0.643,0.893,0.607,0.714,and 0.714,and specificity 0.702,0.904,0.883,0.968,and 0.894(P<0.05).CONCLUSION The imaging features of CRC correlate with the short-term prognosis following laparoscopic radical resection.These findings provide valuable insights for clinical decision-making.
基金Supported by the National Health Commission’s Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment for The Year 2022,National Health Commission’s Master’s and Doctoral/Postdoctoral Fund Project,No.NHCDP2022001Gansu Provincial People’s Hospital Doctoral Supervisor Training Project,No.22GSSYA-3.
文摘The study by Luo et al published in the World Journal of Gastrointestinal Oncology presents a thorough and scientific methodology.Pancreatic cancer is the most challenging malignancy in the digestive system,exhibiting one of the highest mortality rates associated with cancer globally.The delayed onset of symptoms and diagnosis often results in metastasis or local progression of the cancer,thereby constraining treatment options and outcomes.For these patients,prompt tumour identification and treatment strategising are crucial.The present objective of pancreatic cancer research is to examine the correlation between various pathological types and imaging data to facilitate therapeutic decision-making.This study aims to clarify the correlation between diverse pathological markers and imaging in pancreatic cancer patients,with prospective longitudinal studies potentially providing novel insights into the diagnosis and treatment of pancreatic cancer.
基金supported by National Natural Science Fund project [81202284]Guangdong Provincial Natural Science Fund project [S2011040004735]+2 种基金Project for Outstanding Young Innovative Talents in Colleges and Universities of Guangdong Province [LYM11106]Special Research Fund for Basic Scientific Research Projects in Central Universities [21612305, 21612101]Guangzhou Municipal Science and Technology Fund project [2014J4100119]
文摘Objective: To explore the role of the texture features of images in the diagnosis of solitary pulmonary nodules (SPNs) in different sizes. Materials and methods: A total of 379 patients with pathologically confirmed SPNs were enrolled in this study. They were divided into three groups based on the SPN sizes: ≤10, 11-20, and 〉20 mm. Their texture features were segmented and extracted. The differences in the image features between benign and malignant SPNs were compared. The SPNs in these three groups were determined and analyzed with the texture features of images. Results: These 379 SPNs were successfully segmented using the 2D Otsu threshold method and the self-adaptive threshold segmentation method. The texture features of these SPNs were obtained using the method of grey level co-occurrence matrix (GLCM). Of these 379 patients, 120 had benign SPNs and 259 had malignant SPNs. The entropy, contrast, energy, homogeneity, and correlation were 3.5597±0.6470, 0.5384±0.2561, 0.1921±0.1256, 0.8281±0.0604, and 0.8748±0.0740 in the benign SPNs and 3.8007±0.6235, 0.6088±0.2961, 0.1673±0.1070, 0.7980±0.0555, and 0.8550±0.0869 in the malignant SPNs (all P〈0.05). The sensitivity, specificity, and accuracy of the texture features of images were 83.3%, 90.0%, and 86.8%, respectively, for SPNs sized 〈10 mm, and were 86.6%, 88.2%, and 87.1%, respectively, for SPNs sized 11-20 mm and 94.7%, 91.8%, and 93.9%, respectively, for SPNs sized 〉20 mm. Conclusions: The entropy and contrast of malignant pulmonary nodules have been demonstrated to be higher in comparison to those of benign pulmonary nodules, while the energy, homogeneity correlation of malignant pulmonary nodules are lower than those of benign pulmonary nodules. The texture features of images can reflect the tissue features and have high sensitivity, specificity, and accuracy in differentiating SPNs. The sensitivity and accuracy increase for larger SPNs.
基金Project supported by the National Natural Science Foundation of China (Grant No.60502039), the Shanghai Rising-Star Program (Grant No.06QA14022), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.
基金supported by the Project SOP HRD-EFICIENT 61445/2009 of University Dunarea de Jos of Galati,Romania
文摘We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard devia- tion textural feature and a 5x5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the con- trast-to-gradient method. The experiments showed promising segmentation results.
基金the Yunnan Applied Basic Research Projects(No.2016FD039)the Talent Cultivation Project in Yunnan Province(No.KKSY201503063)
文摘In recent years, automatic identification of butterfly species arouses more and more attention in different areas. Because most of their larvae are pests, this research is not only meaningful for the popularization of science but also important to the agricultural production and the environment. Texture as a notable feature is widely used in digital image recognition technology; for describing the texture, an extremely effective method, graylevel co-occurrence matrix(GLCM), has been proposed and used in automatic identification systems. However,according to most of the existing works, GLCM is computed by the whole image, which likely misses some important features in local areas. To solve this problem, this paper presents a new method based on the GLCM features extruded from three image blocks, and a weight-based k-nearest neighbor(KNN) search algorithm used for classifier design. With this method, a butterfly classification system works on ten butterfly species which are hard to identify by shape features. The final identification accuracy is 98%.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
文摘The fractal image encoding method has received much attention for its many advantages over other methods, such as high decoding quality at high compression ratios. However, because every range block must be compared to all domain blocks in the codebook to find the best-matched one during the coding procedure, baseline fractal coding (BFC) is quite time consuming. To speed up fractal coding, a new fast fractal encoding algorithm is proposed. This algorithm aims at reducing the size of the search window during the domain-range matching process to minimize the computational cost. A new theorem presented in this paper shows that a special feature of the image can be used to do this work. Based on this theorem, the most inappropriate domain blocks, whose features are not similar to that of the given range block, are excluded before matching. Thus, the best-matched block can be captured much more quickly than in the BFC approach. The experimental results show that the runtime of the proposed method is reduced greatly com- pared to the BFC method. At the same time, the new algorithm also achieves high reconstructed image quality. In addition, the method can be incorporated with other fast algorithms to achieve better performance Therefore, the proposed algorithm has a much better application potential than BFC.
基金the National Natural Science Foundation of China (60303029)
文摘The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.
文摘Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or distinguish between abnormal and normal tissues on images. In the phase of classification, a set of image features and/or texture features extracted from the images are commonly used. In this article, we investigated the characteristic of the output entropy of an image and demonstrated the usefulness of the output entropy acting as a texture feature in CAD systems. In order to validate the effectiveness and superiority of the output-entropy-based texture feature, two well-known texture features, i.e., mean and standard deviation were used for comparison. The database used in this study comprised 50 CT images obtained from 10 patients with pulmonary nodules, and 50 CT images obtained from 5 normal subjects. We used a support vector machine for classification. A leave-one-out method was employed for training and classification. Three combinations of texture features, i.e., mean and entropy, standard deviation and entropy, and standard deviation and mean were used as the inputs to the classifier. Three different regions of interest (ROI) sizes, i.e., 11 × 11, 9 × 9 and 7 × 7 pixels from the database were selected for computation of the feature values. Our experimental results show that the combination of entropy and standard deviation is significantly better than both the combination of mean and entropy and that of standard deviation and mean in the case of the ROI size of 11 × 11 pixels (p < 0.05). These results suggest that information entropy of an image can be used as an effective feature for CAD applications.
基金supported by National Natural Science Foundation of China(Nos.61305103 and 61473103)Natural Science Foundation Heilongjiang province(No.QC2014C072)+1 种基金Postdoctoral Science Foundation of Heilongjiang(No.LBH-Z14108)SelfPlanned Task of State Key Laboratory of Robotics and System(HIT)(No.SKLRS201609B)
文摘In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recognition methods which are based on kernels or bag of features, with large margin classifier, CFI proposed in this work is based on feature matching, image similarity and clustering of features and images. It establishes independent local feature clusters by feature cloud registration to represent each room, and defines image distance to describe the similarity between images or feature clusters, which determines the label of query images. Besides, it improves recognition speed by image scaling, with state inertia and hidden Markov model constraining the transition of the state to kill unreasonable wrong recognitions and achieves remarkable precision and speed. A series of experiments are conducted to test the algorithm based on standard databases, and it achieves recognition rate up to 97% and speed is over 30 fps, which is much superior to traditional methods. Its impressive precision and speed demonstrate the great discriminative power in the face of complicated environment.
基金supported by the Shandong Provincial Natural Science Foundation (Nos.ZR2023MF062 and ZR2021MF115)the Introduction and Cultivation Program for Young Innovative Talents of Universities in Shandong (No.2021QCYY003)。
文摘Considering the three-dimensional(3D) U-Net lacks sufficient local feature extraction for image features and lacks attention to the fusion of high-and low-level features, we propose a new model called 3DMAU-Net based on the 3D U-Net architecture for liver region segmentation. Our model replaces the last two layers of the 3D U-Net with a sliding window-based multilayer perceptron(SMLP), enabling better extraction of local image features. We also design a high-and low-level feature fusion dilated convolution block that focuses on local features and better supplements the surrounding information of the target region. This block is embedded in the entire encoding process, ensuring that the overall network is not simply downsampling. Before each feature extraction, the input features are processed by the dilated convolution block. We validate our experiments on the liver tumor segmentation challenge 2017(Lits2017) dataset, and our model achieves a Dice coefficient of 0.95, which is an improvement of 0.015 compared to the 3D U-Net model. Furthermore, we compare our results with other segmentation methods, and our model consistently outperforms them.
文摘An ICSED (Improved Cluster Shade Edge-Detection) algorithm and a series of post-processing technique are discussed for automatic delineation of mesoscale structure of the ocean on digital IR images. The popular derivative-based edge operators are shown to be too sensitive to edge fine-structure and to weak gradients. The new edge-detection algorithm is ICSED (Improved Cluster Shade Edge-detection) method and it is found to be an excel lent edge detector that exhibits the characteristic of fine-structure rejection while retaining edge sharpness. This char acteristic is highly desirable for analyzing oceanographic satellite images. A sorting technique for separating clouds or land well from ocean at both day and night is described in order to obtain high quality mesoscale features on the IR image This procedure is evaluated on an AVHRR (Advanced Very High Resolution Radiometer) image with Kuroshio. Results and analyses show that the mesoscale features can be well identified by using ICSED algorithm.
基金supported by National Natural Science Foundation of China (Grant No.41204026)Advanced Research Foundation (Grant No.9140A24060712KG13290)Open Fund of Key Laboratory of Science and Technology on Aerospace Flight Dynamics (Grant No.2012AFDL010)
文摘In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes of primary matching suitable features(PMSFs)are designed based on the characteristics of image texture,SAR imaging and SAR matching algorithm,which is a process involving expertise;on the other hand,by designing a synthesized operation expression tree based on PMSFs,a much more flexible expression form of synthesized features is built,which greatly expands the construction space.Then,the genetic algorithm-based optimized searching process is employed to search the synthesized matching suitable feature(SMSF)with the highest effciency,largely improving the optimized searching effciency.In addition,the experimental results of the airborne synthetic aperture radar ortho-images of C-band and P-band show that the SMSFs gained via the algorithms can reflect the matching suitability of SAR images accurately and the matching probabilities of selected matching suitable areas of ortho-images could reach 99±0.5%.