期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
Prevention of gob ignitions and explosions in longwall mining using dynamic seals 被引量:4
1
作者 Brune Jürgen F. Saki Saqib A. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期999-1003,共5页
Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 201... Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 2010, researchers at the Colorado School of Mines(CSM) have studied EGZ formation in longwall gobs under two long-term research projects funded by the National Institute for Occupational Safety and Health. Researchers used computational fluid dynamics along with in-mine measurements. For the first time, they demonstrated that EGZs form along the fringe areas between the methane-rich atmospheres and the fresh air ventilated areas along the working face and present an explosion and fire hazard to mine workers. In this study, researchers found that, for progressively sealed gobs, a targeted injection of nitrogen from the headgate and tailgate, along with a back return ventilation arrangement, will create a dynamic seal of nitrogen that effectively separates the methane zone from the face air and eliminates the EGZs to prevent explosions. Using this form of nitrogen injection to create dynamic seals should be a consideration for all longwall operators. 展开更多
关键词 MINE explosions FACE ignitions COAL MINING LONGWALL MINING METHANE
在线阅读 下载PDF
An Insight into Spatial-Temporal Trends of Fire Ignitions and Burned Areas in the European Mediterranean Countries
2
作者 Marcos Rodrigues Jesfis San Miguel +2 位作者 Sandra Oliveira Francisco Moreira Andrea Camia 《Journal of Earth Science and Engineering》 2013年第7期497-505,共9页
This paper presents an analysis of the fire trends in southern European countries, where forest fires are a major hazard. Data on number of fires and burned area size from 1985 until 2009 were retrieved from the Europ... This paper presents an analysis of the fire trends in southern European countries, where forest fires are a major hazard. Data on number of fires and burned area size from 1985 until 2009 were retrieved from the European Fire Database in the European Forest Fire Information System and used to study the temporal and spatial variability of fire occurrence at three different spatial scales: the whole European Mediterranean region, country level and province level (NUTS3). The temporal trends were assessed with the Mann-Kendall test and Sen's slope in the period 1985-2009. At regional (supranational) level, our results suggest a significant decreasing trend in the burned area for the whole study period. At country level, the trends vary by country, although there is a general increase in number of fires, mainly in Portugal, and a decrease in bumed areas, as is the case of Spain. A similar behavior was found at NUTS3 level, with an increase of number of fires in the Spanish and Portuguese provinces and a generalized decrease of the burned area in most provinces of the region. These results provide an important insight into the spatial distribution and temporal evolution of fires, a crucial step to investigate the underlying causes and impacts of fire occurrence in this region. 展开更多
关键词 Fire ignition burned area WILDFIRE trend test Mann-Kendall.
在线阅读 下载PDF
Recent advances on the oxide film of ignition-proof magnesium alloys:A review 被引量:1
3
作者 Jiaxuan Han Bo Hu +5 位作者 Zhenfei Jiang Fanjin Yao Zixin Li Dejiang Li Xiaoqin Zeng Wenjiang Ding 《Journal of Magnesium and Alloys》 2025年第1期4-29,共26页
Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The igniti... Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The ignition resistance of these alloys often depends on the protectiveness of the oxide film formed on the surface.This paper elucidates the formation mechanism of oxide film from thermodynamics and kinetics,classifying oxide films based on their layered structure to assess their protective properties.Furthermore,it comprehensively reviews the impact of characteristics on the protective effectiveness such as compactness,continuity,thickness,and mechanical properties.The paper also introduces various characterization methods for the microstructure and properties of oxide film.The primary objective of this paper is to enhance the comprehension of oxide film concerning the ignition resistance of Mg alloys and to furnish references for future advancements and research in Mg alloys with heightened ignition resistance. 展开更多
关键词 Magnesium alloys Ignition resistance Oxide film Layered structure Characterization methods
在线阅读 下载PDF
Laser Ignition Breakthrough-and More Startups-Brighten Outlook for Nuclear Fusion
4
作者 Mitch Leslie 《Engineering》 2025年第2期9-11,共3页
In February 2024,192 lasers at the National Ignition Facility(NIF)in Livermore,CA,USA,began pouring 2.2 MJ of energy into a gold container smaller than the tip of a person’s little finger,heat-ing it to more than thr... In February 2024,192 lasers at the National Ignition Facility(NIF)in Livermore,CA,USA,began pouring 2.2 MJ of energy into a gold container smaller than the tip of a person’s little finger,heat-ing it to more than three million degrees Celsius(Fig.1)[1-4].Inside the container was a tiny fuel capsule containing tritium and deuterium that imploded at more than 400 km·s^(-1)causing atoms to combine and releasing 5.2 MJ of energy[1-4]. 展开更多
关键词 laser ignition nuclear fusion tritium deuterium fuel capsule National Ignition Facility gold container
在线阅读 下载PDF
Flame ignition mechanism of magnesium alloys controlled by oxide films based on the oxidation behaviors of Al,Nd and Y
5
作者 Bo Hu Jiaxuan Han +7 位作者 Zhenfei Jiang Fanjin Yao Mingdi Yu Yahuan Zhao Zixin Li Dejiang Li Xiaoqin Zeng Wenjiang Ding 《Journal of Materials Science & Technology》 2025年第9期123-138,共16页
Oxide films hinder diffusion and resist external forces,which determines the flame ignition mechanism of magnesium alloys.The effects of the continuity,compactness and mechanical properties of oxide films on the ignit... Oxide films hinder diffusion and resist external forces,which determines the flame ignition mechanism of magnesium alloys.The effects of the continuity,compactness and mechanical properties of oxide films on the ignition mechanism were analyzed,by investigating the flame ignition behaviors of AZ80(ZM5),EZ30K(ZM6)and WE43 Mg alloys.The results show that the rupture of the oxide films caused by liquid gravity was the key to causing ignition.According to thermodynamic calculations,compared with Mg,Al cannot be preferentially oxidized;while Nd can be preferentially oxidized through significant enrichment,resulting in a discontinuous Nd_(2)O_(3)inner layer in the ZM6 alloy;in contrast,Y has a strong preferential oxidation ability,which gives the WE43 alloy a continuous Y_(2)O_(3)inner layer and self-healing ability.In addition,the oxide film of the ZM5 alloy is loose and has poor mechanical properties,so it cannot effec-tively hinder diffusion and resist liquid gravity.Differently,the oxide films of the ZM6 and WE43 alloys are dense and have better mechanical properties,leading to higher ignition temperatures and longer igni-tion times.In addition,a criterion was proposed to predict the ignition time based on the law of energy conservation,and it was simplified to predict the ignition temperature.The errors between the predicted and measured values are within 11%. 展开更多
关键词 Mg alloys Flame ignition mechanism Oxide film Ignition criterion
原文传递
Enhancing combustion performance of aluminum-water gelled propellants via polyvinylidene fluoride
6
作者 Songchen YUE Zilong ZHAO +3 位作者 Jiangong ZHAO Jian JIANG Peijin LIU Wen AO 《Chinese Journal of Aeronautics》 2025年第8期231-242,共12页
Aluminum-water(Al-H_(2)O)propellants represent an innovative class of solid propellants characterized by low cost and minimal signal signature.However,conventional formulations are hindered by significant aluminum(Al)... Aluminum-water(Al-H_(2)O)propellants represent an innovative class of solid propellants characterized by low cost and minimal signal signature.However,conventional formulations are hindered by significant aluminum(Al)agglomeration,leading to reduced combustion efficiency and substantial residues.This study introduces a method for modifying Al powder with Polyvinylidene Fluoride(PVDF)to enhance the performance of Al-H_(2)O propellants by mitigating agglomeration during combustion.Experimental methodologies,including thermogravimetric analysis under ambient-pressure nitrogen atmosphere and laser ignition tests,were employed to investigate the influence of varying PVDF content on the combustion characteristics of the propellants.Furthermore,the effect of PVDF on motor performance was systematically evaluated through laboratoryscale Solid Rocket Motor(SRM)tests.The results demonstrate that the addition of 7.5%PVDF significantly enhances the burning rate from 1.12 mm/s to 3.78 mm/s and reduces the mean particle size of condensed combustion products from 699μm to 527μm.Combustion efficiency rises from88.57%to 94.51%,while injection efficiency improves significantly from 30.45%to 70.45%.SRM tests further demonstrate an increase in combustion chamber pressure from 0.17 MPa to 0.58 MPa.A dynamic agglomeration model explains these improvements,attributing reduced agglomeration to enhanced aerodynamic forces and a thinner melting layer,while increased gas yield improves injection performance.This study highlights PVDF's potential in advancing Al-H_(2)O propellants by improving combustion and injection efficiency. 展开更多
关键词 Aluminum-water propellants COMBUSTION IGNITION INJECTION Solid rocket motor
原文传递
Effect of Y on oxide film formation and ignition behavior of magnesium-rare earth alloy
7
作者 Longbiao Feng Hongxian Shen +5 位作者 Lunyong Zhang Ziao Qiu Fuyang Cao Zhiliang Ning Yongjiang Huang Jianfei Sun 《Journal of Magnesium and Alloys》 2025年第7期3020-3036,共17页
The incorporation of Y significantly improves the fire resistance of the Mg-3Nd-2Gd-0.2Zr-0.2Zn(EV32)alloy.The findings indicate a significant increase in the ignition point of the alloy upon Y addition,notably reachi... The incorporation of Y significantly improves the fire resistance of the Mg-3Nd-2Gd-0.2Zr-0.2Zn(EV32)alloy.The findings indicate a significant increase in the ignition point of the alloy upon Y addition,notably reaching 813.9℃ for the EV32–3Y(wt.%)alloy.Additionally,the calculated residual stresses of the Y_(2)O_(3) and Gd_(2)O_(3) films were 2.732 GPa and 2.569 GPa respectively,showcasing a distinct correlation between Y concentration and improved fire resistance.This enhancement can be attributed to the formation of denser oxide films,especially Y_(2)O_(3) and Gd_(2)O_(3),effectively reducing the susceptibility of the oxide film to thermal stress-induced tearing.The study elucidates the vital role of Y addition in enhancing fire resistance,thoroughly investigating the mechanisms that impact both the formation of oxide films and ignition within the alloy structure.These findings not only contribute to a deeper comprehension of magnesium alloy performance under high-temperature conditions but also offer valuable theoretical guidance for enhancing its fire resistance through alloy design and application. 展开更多
关键词 EV32 alloy OXIDATION Residual stress IGNITION
在线阅读 下载PDF
Electric ignition of sandstone fracturing in methane/air premixed gas in coal mines:Novel insights from ignition sources in a goaf
8
作者 Wei Zhang Deming Wang +5 位作者 Xuyao Qi Chenguang Wang Zhenlu Shao Haihui Xin Tengfei Chen Zhenhai Hou 《International Journal of Mining Science and Technology》 2025年第10期1677-1693,共17页
Gas explosions in coal mine goafs are associated with the roof rock fracturing.An experimental system was established to investigate the potential for electrical ignition induced by sandstone fracturing.The electrical... Gas explosions in coal mine goafs are associated with the roof rock fracturing.An experimental system was established to investigate the potential for electrical ignition induced by sandstone fracturing.The electrical responses,luminescent emissions,and ignition characteristics during tensile and compressive failure of sandstones were analyzed in methane/air premixed gas environments.Results indicate that the application of mechanical loading induces the emergence of electrical signals on rock surfaces and in the surrounding atmosphere.This phenomenon is attributed to the generation,accumulation,and subsequent release of free charges during the deformation and fracture within the sandstone.Compressive failure proved to be more conducive to free charge generation than tensile failure,owing to more crack connections.Furthermore,a precipitous increase in surface and external voltages was observed during complete fracturing,a consequence of electron emission from crack tips within the rock structure.Moreover,the ionization induces luminous emissions owing to the collision of energetic electrons released from gas molecules in methane/air mixtures.A strong positive correlation(R2=0.9429)was identified between luminescence intensity and the magnitude of electrical discharge resulting from rock fracture.Notably,such discharge by rock fracturing can be capable of igniting the premixed gas,particularly when the quartz content exceeds 61%.Piezoelectric effects and crack propagation are crucial mechanisms in the causal chain of the charge generation,discharge,and ionization triggered by rock fractures.Based on the above laboratory results,electric ignition of the transient roof fracturing caused by stress mutations can serve as a new potential ignition source for gas explosions in the goaf.These results offer new insights into the prevention and control of gas explosions. 展开更多
关键词 Gas explosions Roof sandstone Electric ignition Luminous emission Piezoelectric effect Crack propagation
在线阅读 下载PDF
Laser ablation ignition modes in a cavity-based supersonic combustor
9
作者 Jianheng JI Zun CAI +4 位作者 Taiyu WANG Yifu TIAN Mingbo SUN Jiajian ZHU Zhenguo WANG 《Chinese Journal of Aeronautics》 2025年第4期112-126,共15页
A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number... A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number 2.92 supersonic inflow,with stagnation pressureof 2.4 MPa and stagnation temperature of 1600 K.Reynolds-averaged Navier-Stokes simulationswere conducted to characterize the mixing process and flow field structure.This study identifiedfour distinct LA ignition modes.Under the specified condition,laser ablation in zero and negativedefocusing states manifested two distinct ignition modes termed Laser Ablation Direct Ignition(LADI)mode and Laser Ablation Re-Ignition(LARI)mode,correspondingly.LA ignition in alocal small cavity,created by depressing the flow field regulator,could facilitate the ignition modetransforming from LARI mode to Laser Ablation Transition Ignition(LATI)mode.On the otherhand,the elevation of the flow field regulator effectively inhibited the forward propagation of theinitial flame kernel and reduced the dissipation of LA plasma,further enhancing the LADI mode.Based on these characteristics,the LADI mode was subdivided into strong(LADI-S)and weak(LADI-W)modes.Facilitating the transition of ignition modes through alterations in the local flowfield could contribute to attaining a more effective and stable LA ignition. 展开更多
关键词 Laser ablation Ignition mode Supersonic combustor Flame propagation CAVITY
原文传递
Numerical analysis of a vented methane/air explosion in a large-scale chamber
10
作者 Huadao Xing Guangan Xu +4 位作者 Yanyu Qiu Song Sun Bin Li Mingyang Wang Lifeng Xie 《Defence Technology(防务技术)》 2025年第10期207-219,共13页
The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data ... The internal and external flow fields during vented explosions of methane were characterized through numerical simulation,and the capability of numerical simulation thereof was validated by previous experimental data at three ignition positions.The venting mechanism was revealed by the simulated concentration distribution,temperature profile,and airflow velocity.The results show rear ignition results in the external methane mass distribution taking the form of"mushroom"and columnar flames in the external space,which can be expressed as a third-order polynomial relationship with distance;central ignition forms a relationship of the form y=AxB.Front ignition causes the temperature to show a tendency to repeated oscillations(rising,falling,and rising).Central ignition generates the maximum vented airflow velocity(V_(max)=320 m/s)upon vent opening.The results indicate that it is acceptable to apply numerical simulation of methane explosions in practice. 展开更多
关键词 METHANE Vented explosion Numerical simulation Ignition position Field behavior
在线阅读 下载PDF
Influence of Aviation Kerosene-Diesel Blending Ratios on Ignition Behavior and Spray Dynamics
11
作者 Hailong Chen Guanzhen Tao +1 位作者 Daijun Wei Guangyao Ouyang 《Fluid Dynamics & Materials Processing》 2025年第10期2527-2538,共12页
Modifications in fuel spray characteristics fundamentally influence fuel–air mixing dynamics in diesel engines,thereby significantly affecting combustion performance and emission profiles.This study explores the oper... Modifications in fuel spray characteristics fundamentally influence fuel–air mixing dynamics in diesel engines,thereby significantly affecting combustion performance and emission profiles.This study explores the operational behavior of RP-5 aviation kerosene/diesel blended fuels in marine diesel engines.A spray visualization platform based on Mie scattering technology was developed to comparatively analyze the spray characteristics,ignition behavior,and soot emissions of RP-5 aviation kerosene,conventional-35#diesel,and their blends at varying mixing ratios(D100H0,D90H10,D70H30,D50H50,D30H70,D0H100).The findings demonstrate that,under constant injection pressure,aviation kerosene combustion results in a more uniform temperature field,characterized by lower core flame temperatures,broader high-temperature regions,and reduced soot concentrations with spatially homogeneous distribution and no pronounced peaks.In terms of spray dynamics,increasing the proportion of aviation kerosene leads to a marked widening of the spray cone angle.Meanwhile,spray penetration length exhibits a non-monotonic trend—initially decreasing and subsequently increasing—as the kerosene blending ratio rises. 展开更多
关键词 Diesel/Aviation kerosene IGNITION SOOT SPRAY
在线阅读 下载PDF
Investigation of the ignition and combustion characteristics of Al@AP incorporated with graded aluminum powder
12
作者 Su-Lan Yang Jing Wang +4 位作者 Zhi-Yu Zhang Kan Xie Ming-Hui Yu Yue-Ke Xiong Bin Tian 《Defence Technology(防务技术)》 2025年第8期225-235,共11页
The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have ... The utilization of graded Al powders offers the possibility to adjust the combustion performance of Al powders,while simultaneously safeguarding their energy properties.In this paper,a series of graded Al powder have been incorporated into the typical Al@AP composites through the spray drying technique.The thermal behavior,ignition and combustion characteristics were comprehensively evaluated and compared.The experimental results showed that with the varying inclusion of the graded Al,the heat of reaction exhibited a significant change,ranging from 9090 J·g^(-1) to 11036 J·g^(-1),which was strongly dependent on the particle size of Al.The combination of Al with diverse range of particle sizes in graded configuration serves to significantly enhance the decomposition of AP,resulting in the disappearance of the LTD stage and a conspicuous decrease of at least 11.7℃ in the peak temperature of the HTD.Furthermore,the maximum burning rate achieved by the Al-3@AP composite was 33.6 mm·s^(-1),which was exactly twice as high as that of the graded Al-1@AP composite with the lowest burning rate.Diffraction peaks corresponding to unburned Al were detected in the condensed combustion products of Al-1@AP,and the combustion images clearly indicated an incomplete combustion tendency for this sample.In contrast,a well-designed gradation of Al powders,such as a combination of fine Al powders with a particle size below 5μm,has proven to be the most conducive to enhancing the combustion efficiency of the composites. 展开更多
关键词 Ignition performance Thermal reactivity Core-shell structure Graded Al
在线阅读 下载PDF
Effects of Fuel Injection and Ignition on the Direct-Start Process of a Gasoline Direct Injection(GDI)Engine
13
作者 Tao Chen Zhengyu Du +3 位作者 Zihan Liu Maoyu Xiao Zhe Zhang Lei Shi 《Fluid Dynamics & Materials Processing》 2025年第2期405-426,共22页
During the highly transient process of the direct-start in a four-cylinder GDI engine,each cylinder exhibits specific characteristics in terms of in-cylinder conditions and energy demands,necessitating different contr... During the highly transient process of the direct-start in a four-cylinder GDI engine,each cylinder exhibits specific characteristics in terms of in-cylinder conditions and energy demands,necessitating different control for each cylinder.However,recent studies have paid insufficient attention to cylinders other than the first starting cylinder.This paper proposes a comprehensive control strategy based on experimental data from the direct-start process of the second,third,and fourth cylinders,aiming to enhance the characteristics of combustion and emission performance through the optimization of injection timing,equivalence ratio,and ignition timing.The research findings indicate that the second cylinder should inject fuel approximately 10 ms after the first cylinder ignites to mix thoroughly the fuel with air.The ignition timing of the second cylinder should be close to the highest point of the piston movement to minimize hindrance to the piston compression process.The third and fourth cylinders should adopt a delayed injection timing strategy to prevent the escape of injected fuel caused by low engine speed.The optimal ignition timing for the third cylinder is 20℃A BTDC,while the fourth cylinder should be ignited earlier due to its stronger airflow and faster formation of a mixture that can be ignited.As the fuel injection quantity increases,the power output of the three cylinders enhances,but at the same time,emissions also increase.Therefore,their optimal equivalence ratios are determined as 1.2,1.4,and 1.2,respectively,striking a balance between combustion and emission performances. 展开更多
关键词 Direct-start process GDI engine fuel injection strategy ignition strategy
在线阅读 下载PDF
Historical trajectory,current status,and future challenges of powder engines and propellant supply technologies:A comprehensive review
14
作者 Guanlong Ren Haijun Sun +5 位作者 Chunbo Hu Yuxin Yang Chao Li Yihua Xu Rui Xue Xiaoan Hu 《Defence Technology(防务技术)》 2025年第10期142-183,共42页
Powder engine as a novel type of engine using high-energy metal powder as fuel and gas,liquid,or solid as oxidizer.These engines exhibit remarkable adaptability,flexible thrust regulation,and multi-pulse start-stop,wh... Powder engine as a novel type of engine using high-energy metal powder as fuel and gas,liquid,or solid as oxidizer.These engines exhibit remarkable adaptability,flexible thrust regulation,and multi-pulse start-stop,which have significant application potentials in the fields of near-Earth space development,space propulsion systems,and deep-sea exploration.The scope of this review encompasses the classification and application of powder engines,the classification of powdered fuel supply systems,and the prospective trajectories and pivotal challenges of powder engines and fuel supply technologies.This work points out that although certain ground-based experimental challenges on powder engines have been solved,the relative technology remains in the nascent stages of feasibility demonstration and testing.The pneumatic and motor-driven piston methods currently dominate as the primary means for supplying fuel,and the structure of the piston and intake should be further optimized in the future to promote fuel fluidization and delivery efficiency.The adaptability of powder engines and powdered fuels under different pre-treatment and loading methods should be evaluated.Furthermore,the stability of powdered fuel delivery across varying operational environments,the accuracy of CFD modeling,and the precision of mass flow rate measurement and prediction technologies necessitate further enhancement and refinement.These advancements are crucial for the maturation of powder engine technology and its integration into practical applications. 展开更多
关键词 Powder engine Powdered fuel ramjet Multi-pulse ignition Thrust adjustment Mass flow rate regulation Gas-solid two-phase flow
在线阅读 下载PDF
Three-dimensional burning crack dynamics in constrained spherical explosive:visualization analysis and cavity-coupled pressure modeling
15
作者 Chuanyu Pan Tao Li +4 位作者 Hua Fu Hailin Shang Pingchao Hu Ping Li Xilong Huang 《Defence Technology(防务技术)》 2025年第10期306-318,共13页
Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure... Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure dynamics in confined explosives.This study combines a novel spherical confinement system(with/without sapphire windows)with synchronized high-speed imaging and 3D reconstruction to overcome optical limitations in opaque explosives.Experimental analysis of centrally ignited HMX-based PBX-1 reveals:(1)burning cracks propagate radially with equatorial acceleration and polar deceleration,(2)systematic formation of 3–4 dominant crack branches across geometries,and(3)pressure evolution exhibiting gradual accumulation(subsurface cracking)followed by exponential growth(surface burn-through),with decay governed by cavity expansion.Building on Hill's framework,we develop a model incorporating cavity volume and fracture toughness criteria,validated against PBX explosive(95%HMX-based)experiments.The model demonstrates improved prediction of pressure trends compared to prior approaches,particularly in resolving laminar-phase accumulation and crackinduced surge transitions.Results establish structural cavity volume as a critical modulator of measured pressure and reveal direction-dependent crack kinematics as fundamental features of constrained combustion.This work provides experimentally validated insights into mechanisms of reaction pressure development and burning cracks pathways during constrained PBX explosive combustion. 展开更多
关键词 Burning crack propagation Explosive combustion reaction Non-shock ignition Structural cavity effects Energetic material safety
在线阅读 下载PDF
Effect of gold doping on relativistic electron beam transport in high-density plasma
16
作者 Zi-Yan Zhang Wei-Min Wang 《Chinese Physics B》 2025年第7期95-102,共8页
We investigate the influence of gold doping on the transport range of a relativistic electron beam in high-density deuterium–tritium(DT)fuel,which could be encountered in the double-cone ignition laser fusion.We deve... We investigate the influence of gold doping on the transport range of a relativistic electron beam in high-density deuterium–tritium(DT)fuel,which could be encountered in the double-cone ignition laser fusion.We develop the stopping power model to include gold doping and then analyze the influence of Coulomb collision and bremsstrahlung on the electron transport range with different gold doping ratios,consistent with the Geant4 simulations.When the gold doping ratio increases from 0.5%to 30%,the transport range of a 10 Me V electron beam is decreased by 9.6%and 18.5%via the bremsstrahlung.For the 1 Me V beam,the decrease of the range becomes 0.7%and 1.0%.We also investigate the transverse broadening of the electron beam and radiated photon energy reabsorption in a spherical target.When the gold doping ratio is 2%and the beam energy is increased from 1 Me V to 5 Me V,the bremsstrahlung photons cover 2.6%to 10.3%of the total beam energy.Meanwhile,the reabsorbed photon energy is reduced from 31.6%to 8.9%. 展开更多
关键词 double-cone ignition(DCI)scheme stopping power GEANT4 BREMSSTRAHLUNG
原文传递
Fabrication of energetic semiconductor Bridge with high efficiency,accuracy and low cost by 3D direct writing
17
作者 Yongqi Da Jiangtao Zhang +4 位作者 Fuwei Li Yuxuan Zhou Jianbing Xu Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 2025年第8期69-82,共14页
Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficie... Enhancing the output capacity of semiconductor bridge(SCB) through the application of composite nano-energetic films is a subject of wide concern. Furthermore, improving the safety, reliability, and production efficiency of energetic semiconductor bridge(ESCB) is the primary focus for large-scale engineering applications in the future. Here, the Al/CuO nano-film ESCB was efficiently fabricated using 3D direct writing. The electrostatic safety of the film is enhanced by precisely adjusting the particle size of Al, while ensuring that the SCB can initiate the film with small energy. The burst characteristics of SCB/ESCB were thoroughly investigated by employing a 100 μF tantalum capacitor to induce SCB and ESCB under an intense voltage gradient. The solid-state heating process of both SCB and ESCB was analyzed with multi physical simulation(MPS). The experimental results demonstrate that the critical burst time of both SCB and ESCB decreases with increasing voltage. Under the same voltage, the critical burst time of ESCB is longer than that of SCB, primarily due to differences in the melting to vaporization stage. The MPS results indicate that the highest temperature is observed at the V-shaped corner of SCB. Due to the thermal contact resistance between SCB and the film, heat conduction becomes more concentrated in the central region of the bridge, resulting in a faster solid-state heating process for ESCB compared to SCB.The results of the gap ignition experiments indicate that at a 19 mm gap, an ESCB with a film mass of 10 mg can ignite nickel hydrazine nitrate(NHN) and cyclotrimethylenetrinitramine(RDX). This suggests that thermite ESCB can serve as a novel, safe, and reliable energy exchange element and initiator in largescale engineering applications. 展开更多
关键词 Semiconductor bridge Al/CuO film Multi physical simulation(MPS) Electrostatic safety Gap ignition
在线阅读 下载PDF
Experimental research on stimulated Raman scattering under a hybrid-drive ignition path
18
作者 Kaiqiang Pan Zhanjun Liu +8 位作者 Xuelong Qin Jiwei Li Tao Gong Qing Wang Ji Yan Zhichao Li Dong Yang Yonggang Liu Xiantu He 《Matter and Radiation at Extremes》 2025年第5期45-53,共9页
Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show ... Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams,but is suppressed by adding a toe before the main pulse of the ID beams.The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum.When a toe is used,the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density,which will result in a lower risk of super-hot electrons.Measurements of hot electrons support this conclusion.This research will help us produce a better pulse design for this new ignition path. 展开更多
关键词 stimulated raman scattering srs ignition path Direct Drive Stimulated Raman Scattering ablating polyimide film Plasma Density Indirect Drive id dd beams
在线阅读 下载PDF
Study on the gas field characteristics of SCB plasma using laser interferometry
19
作者 WANG Renbao ZHOU Guojun +1 位作者 MA Qiushi ZHU Shunguan 《Optoelectronics Letters》 2025年第7期407-412,共6页
The semiconductor bridge(SCB)ignites through bridge film discharge,offering advantages such as low ignition energy,high safety,and compatibility with digital logic circuits.The study uses laser interferometry to inves... The semiconductor bridge(SCB)ignites through bridge film discharge,offering advantages such as low ignition energy,high safety,and compatibility with digital logic circuits.The study uses laser interferometry to investigate the gas dynamics of the bridge film after SCB plasma extinction.Interferometric images of the SCB film gas were obtained through a laser interferometry optical path.After the degradation model of digital image processing,clearer images were produced to facilitate analysis and calculation.The results show that the gas temperature at the center of the SCB film reaches a maximum of 1000 K,and the temperature rapidly decreases along the axial direction of the bridge surface to room temperature at 300 K.The maximum diffusion velocity of the plasma is 1.8 km/s.These findings provide critical insights for SCB design and ignition control. 展开更多
关键词 laser interferometry SCB plasma degradation model gas field characteristics digital image processingclearer gas dynamics digital logic circuitsthe semiconductor bridge scb ignites
原文传递
Investigation of ruling parameters on the growth of side and back stimulated Raman scattering in inhomogeneous plasmas at shock ignition laser intensity
20
作者 G.Cristoforetti E.Hume +28 位作者 S.Agarwal D.Batani M.Cervenak P.Devi R.Dudzak D.Ettel P.Gajdos K.Glize S.Jelinek L.Juha P.Koester M.Krupka M.Krus H.Larreur G.Malka D.Mancelli P.E.Masson-Laborde A.Morace Ph.Nicolai O.Renner D.Singappuli S.Singh M.Tatarakis X.Yuan Y.Wang N.Woolsey J.Zhang X.Zhao L.A.Gizzi 《Matter and Radiation at Extremes》 2025年第4期15-23,共9页
Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr... Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma. 展开更多
关键词 inertial confinement fusionnonethelessssrs theoretical modeling backwards stimulated Raman scattering side stimulated raman scattering ssrs instability national ignition facility plasma density gradient reduce laser plasma coupling suprathermal hot electrons
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部