This paper studies thee convergence properties of multiplicative iterative algorithms with inexact line search. We prove that the convergence can be guaranteed for a general form of line search rille, under the assu...This paper studies thee convergence properties of multiplicative iterative algorithms with inexact line search. We prove that the convergence can be guaranteed for a general form of line search rille, under the assumption of convexity of objective function or the assumption of convergence of the sequence generated by the algorithm. This answers an open problem put forward by lusem.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
文摘This paper studies thee convergence properties of multiplicative iterative algorithms with inexact line search. We prove that the convergence can be guaranteed for a general form of line search rille, under the assumption of convexity of objective function or the assumption of convergence of the sequence generated by the algorithm. This answers an open problem put forward by lusem.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.