期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于ARM架构的边缘计算服务器关键平台研究 被引量:2
1
作者 刘东 王瑞锦 +2 位作者 赵彦钧 马朝阳 袁昊男 《计算机科学》 CSCD 北大核心 2024年第S01期734-741,共8页
针对现有边缘计算基础网关服务器既不具备安全、稳定、可靠与通用性强等特点,又无法支持边缘计算场景的计算任务等问题,文中首次在基于ARM架构的鲲鹏920芯片的长虹天宫边缘计算服务器TG225B1上,设计并实现了适用于边缘计算场景的iBMC软... 针对现有边缘计算基础网关服务器既不具备安全、稳定、可靠与通用性强等特点,又无法支持边缘计算场景的计算任务等问题,文中首次在基于ARM架构的鲲鹏920芯片的长虹天宫边缘计算服务器TG225B1上,设计并实现了适用于边缘计算场景的iBMC软硬件架构。该架构采用ARM国产化硬件底座,支持边缘网关硬件管理,实现工控多协议的自适应交互框架。对符合性、功能、性能、易用性、维护性、可靠性、兼容性等指标进行测试,表明iBMC架构能较好满足边缘计算服务器的需求。 展开更多
关键词 边缘计算服务器 ARM架构 BMC ibmc
在线阅读 下载PDF
车灯反光罩用注射团状模塑料 被引量:3
2
作者 江万松 王秀梅 栾彩霞 《玻璃钢/复合材料》 CAS CSCD 1999年第3期25-25,32,共2页
本文对轿车前大灯注射团状模塑料反光罩的表面质量、冲击强度及湿热老化性能进行了研究,并与国内外同类产品的测试结果作了对比。
关键词 注射团状模塑料 反光罩 玻璃钢 车灯 汽车
在线阅读 下载PDF
Iterative Bayesian Monte Carlo for nuclear data evaluation 被引量:7
3
作者 Erwin Alhassan Dimitri Rochman +3 位作者 Alexander Vasiliev Mathieu Hursin Arjan JKoning Hakim Ferroukhi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第4期105-135,共31页
In this work,we explore the use of an iterative Bayesian Monte Carlo(iBMC)method for nuclear data evaluation within a TALYS Evaluated Nuclear Data Library(TENDL)framework.The goal is to probe the model and parameter s... In this work,we explore the use of an iterative Bayesian Monte Carlo(iBMC)method for nuclear data evaluation within a TALYS Evaluated Nuclear Data Library(TENDL)framework.The goal is to probe the model and parameter space of the TALYS code system to find the optimal model and parameter sets that reproduces selected experimental data.The method involves the simultaneous variation of many nuclear reaction models as well as their parameters included in the TALYS code.The‘best’model set with its parameter set was obtained by comparing model calculations with selected experimental data.Three experimental data types were used:(1)reaction cross sections,(2)residual production cross sections,and(3)the elastic angular distributions.To improve our fit to experimental data,we update our‘best’parameter set—the file that maximizes the likelihood function—in an iterative fashion.Convergence was determined by monitoring the evolution of the maximum likelihood estimate(MLE)values and was considered reached when the relative change in the MLE for the last two iterations was within 5%.Once the final‘best’file is identified,we infer parameter uncertainties and covariance information to this file by varying model parameters around this file.In this way,we ensured that the parameter distributions are centered on our evaluation.The proposed method was applied to the evaluation of p+^(59)Co between 1 and 100 MeV.Finally,the adjusted files were compared with experimental data from the EXFOR database as well as with evaluations from the TENDL-2019,JENDL/He-2007 and JENDL-4.0/HE nuclear data libraries. 展开更多
关键词 Iterative Bayesian Monte Carlo(ibmc) Nuclear reaction models Model parameters ADJUSTMENTS Bayesian calibration Nuclear data TALYS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部