The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1...Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.展开更多
Let X=Σ_(i=1)^(n)a_(i)ξ_(i)be a Rademacher sum with Var(X)=1 and Z be a standard normal random variable.This paper concerns the upper bound of|P(X≤x)−P(Z≤x)|for any x∈R.Using the symmetric properties and R softwa...Let X=Σ_(i=1)^(n)a_(i)ξ_(i)be a Rademacher sum with Var(X)=1 and Z be a standard normal random variable.This paper concerns the upper bound of|P(X≤x)−P(Z≤x)|for any x∈R.Using the symmetric properties and R software,this paper gets the following improved Berry-Esseen type bound under some conditions,|P(X≤x)−P(Z≤x)|≤P(Z∈(0,a1)),∀x∈R,which is one of the modified conjecture proposed by Nathan K.and Ohad K.展开更多
设{X,Xn,n≥1}是独立同分布正态随机变量序列,EX=0且EX2=σ2>0,Sn=sum (Xk) form k=1 to n,λ(ε) =sum form (P(|Sn|≥ nε)) form n=1 to ∞.在本文中,我们证明了存在正常数C1和C2,使得对足够小的ε>0,成立下列不等式C1ε3 ≤ε...设{X,Xn,n≥1}是独立同分布正态随机变量序列,EX=0且EX2=σ2>0,Sn=sum (Xk) form k=1 to n,λ(ε) =sum form (P(|Sn|≥ nε)) form n=1 to ∞.在本文中,我们证明了存在正常数C1和C2,使得对足够小的ε>0,成立下列不等式C1ε3 ≤ε2λ(ε)-σ2+ε2 /2 ≤ C2ε3.展开更多
Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), t...Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), the article deals with the precise rates in the genenralized law of the iterated logarithm for a kind of weighted infinite series of P(|S_n| ≥(ε + a_n)σn^(1/2)(log log n)~d).展开更多
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金Research supported by National Nature Science Foundation of China:10471126
文摘Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.
基金supported by the National Natural Science Foundation of China(Grant No.11861029)the Hainan Provincial Natural Science Foundation of China(Grants Nos.122MS056,124MS056).
文摘Let X=Σ_(i=1)^(n)a_(i)ξ_(i)be a Rademacher sum with Var(X)=1 and Z be a standard normal random variable.This paper concerns the upper bound of|P(X≤x)−P(Z≤x)|for any x∈R.Using the symmetric properties and R software,this paper gets the following improved Berry-Esseen type bound under some conditions,|P(X≤x)−P(Z≤x)|≤P(Z∈(0,a1)),∀x∈R,which is one of the modified conjecture proposed by Nathan K.and Ohad K.
文摘设{X,Xn,n≥1}是独立同分布正态随机变量序列,EX=0且EX2=σ2>0,Sn=sum (Xk) form k=1 to n,λ(ε) =sum form (P(|Sn|≥ nε)) form n=1 to ∞.在本文中,我们证明了存在正常数C1和C2,使得对足够小的ε>0,成立下列不等式C1ε3 ≤ε2λ(ε)-σ2+ε2 /2 ≤ C2ε3.
基金Supported by the National Natural Science Foundation of China(Grant No.61662037)the Scientific Program of Department of Education of Jiangxi Province(Grant Nos.GJJ150894GJJ150905)
文摘Let {X, X_n, n ≥ 1} be a sequence of i.i.d. random vectors with EX =(0,..., 0)_(m×1) and Cov(X, X) = σ~2 Ⅰ_m, and set S_n =∑_(i=1)~n X_i, n ≥ 1. For every d 〉 0 and a_n =o((log log n)^(-d)), the article deals with the precise rates in the genenralized law of the iterated logarithm for a kind of weighted infinite series of P(|S_n| ≥(ε + a_n)σn^(1/2)(log log n)~d).