期刊文献+
共找到907,523篇文章
< 1 2 250 >
每页显示 20 50 100
基于i-Tree模型的北京10条绿道木本植物的生态效益评估 被引量:1
1
作者 王希 徐敏 王美仙 《园林》 2025年第5期106-113,共8页
植物是发挥绿道生态功能的重要载体,量化植物的生态效益不仅能更直观地表现绿道的生态价值,而且可以为未来建设或更新绿道植物景观时选择高生态效益植物提供数据支撑,进而做出更加科学的决策。调查北京10条绿道木本植物的应用情况,运用i... 植物是发挥绿道生态功能的重要载体,量化植物的生态效益不仅能更直观地表现绿道的生态价值,而且可以为未来建设或更新绿道植物景观时选择高生态效益植物提供数据支撑,进而做出更加科学的决策。调查北京10条绿道木本植物的应用情况,运用i-Tree模型量化绿道以及单种本本植物在吸收CO_(2)、净化空气、截留雨水、节能4方面的生态效益,并探索绿道和植物特征与生态效益之间的关系。研究结果表明:北京10条绿道植物群落的稳定性较高,且种数分布比较均匀,生长状态稳定,有利于生态结构稳定性的维持以及生态效益的发挥;10条绿道共产生节能效益(672.82万元)>净化空气效益(135.73万元)>截留雨水效益(124.57万元)>吸收CO_(2)效益(16.68万元);乔木的单株生态效益高于灌木,高生态效益乔木有桑、胡桃、悬铃木、毛白杨、美国皂荚、刺槐、鹅掌楸、黑杨、臭椿、黑松;灌木有野茉莉、胡枝子、贴梗海棠、黄栌、平枝栒子、迎春、金银忍冬、欧洲荚蒾、暴马丁香、锦带花;株高高于6 m、胸径(地径)大于20 cm、冠幅大于4 m的木本植物生态效益较高;适当延长绿道长度、增加木本植物数量、丰富植物群落配置层次,可以提高绿道的生态效益。 展开更多
关键词 北京市绿道 木本植物 生态效益 i-tree模型 生态系统服务价值评估
在线阅读 下载PDF
基于i-Tree模型的公园植物群落与生态效益研究——以蚌埠市张公山公园为例 被引量:1
2
作者 姚晓洁 杜存刚 《长春大学学报》 2025年第2期35-41,共7页
以蚌埠市张公山公园的植物群落为研究对象,对群落的树种组成、群落空间类型及植物的胸径等级进行分析;运用i-Tree模型进行生态效益价值评估,将固碳效益、空气净化效益、截留雨水效益等量化为经济效益。结果表明,植物群落类型多为阔叶混... 以蚌埠市张公山公园的植物群落为研究对象,对群落的树种组成、群落空间类型及植物的胸径等级进行分析;运用i-Tree模型进行生态效益价值评估,将固碳效益、空气净化效益、截留雨水效益等量化为经济效益。结果表明,植物群落类型多为阔叶混交林,植物胸径多数介于7.6~30.5 cm之间,处于生长较稳定的阶段。张公山公园植物群落年总生态效益的价值为80812.66元,生态效益按照大小排序为:固碳效益>空气净化效益>截留雨水效益>产氧量。 展开更多
关键词 城市公园 i-tree模型 生态效益 植物群落 蚌埠市
在线阅读 下载PDF
基于i-Tree Eco模型的滨河景观生态效益分析——以许昌市饮马河北段为例
3
作者 余显显 武一帆 +4 位作者 孔令鹏 赵玉西 王泳涵 杨眉佳 吴国玺 《国土与自然资源研究》 2025年第2期81-86,共6页
以许昌市饮马河北段为研究对象,实地普查了该滨河景观带的物种组成与生长特性,并以i-Tree Eco模型评价树木的净化空气、固碳、释氧、雨水截留等生态效益,也尝试评估地被植物与水生植物的生态效益。结果表明,(1)研究区共有70种园林植物,... 以许昌市饮马河北段为研究对象,实地普查了该滨河景观带的物种组成与生长特性,并以i-Tree Eco模型评价树木的净化空气、固碳、释氧、雨水截留等生态效益,也尝试评估地被植物与水生植物的生态效益。结果表明,(1)研究区共有70种园林植物,其中树木36种8 951株,优势树种有白蜡、银杏、水杉等。(2)研究区树木年总生态效益为97.62万元,以碳储存(56.44万元)和产氧(18.36万元)为主,单株平均生态效益较高的有杨树、枫杨、馒头柳、苦楝等。(3)地被植物固碳、产氧、滞尘等的生态效益共111.97万元,湿地气候调节、固碳、水质净化等的生态效益共7.89万元。期望本研究为城市滨水景观的植物配置与优化提供参考。 展开更多
关键词 生态效益 滨河景观 许昌 i-tree Eco模型
在线阅读 下载PDF
基于i-Tree模型的城市滨水绿地生态效益分析
4
作者 段佳佳 兰亦阳 李宗睿 《湖北师范大学学报(自然科学版)》 2025年第3期45-53,共9页
为了研究城市滨水绿地的碳汇能力,以北京城市副中心行政办公区镜河北段为研究对象,收集区域内的树木树种、胸径、冠幅等信息,分析该区域的树木结构,并利用i-Tree模型对该区域的固碳、释氧、截留雨水等生态效益进行了评估分析。结果表明... 为了研究城市滨水绿地的碳汇能力,以北京城市副中心行政办公区镜河北段为研究对象,收集区域内的树木树种、胸径、冠幅等信息,分析该区域的树木结构,并利用i-Tree模型对该区域的固碳、释氧、截留雨水等生态效益进行了评估分析。结果表明,研究区域内有14科21属共计34个树种,其中30种属于北京市乡土品种,其中油松数量最多,树木胸径主要集中在12~20 cm.树木的碳储量为69.4 t,产生的价值36425.98元。年产生的生态价值排序为:释氧效益(43.5%)>净化空气效益(40.4%)>固碳效益(8.2%)>截留雨水效益(7.9%),总价值为4.95万元。综合效益价值发挥较好的树种主要有油松、白蜡、银红槭秋焰、栾树、垂柳、悬铃木、黄栌、白皮松、二乔玉兰,在滨河绿地中可优先考虑配置。 展开更多
关键词 碳汇 生态效益 滨河绿地 i-tree模型
在线阅读 下载PDF
基于i-Tree模型的典型城市困难立地骨干树种生态效益评估
5
作者 张瀚月 张冬梅 +5 位作者 张浪 罗玉兰 有祥亮 傅仁杰 尹丽娟 朱爱青 《园林》 2025年第11期102-108,共7页
目前在有限的城市空间中开展生态修复和园林绿化建设工程主要以城市困难立地为载体,科学量化城市困难立地园林绿化工程对城市生态环境的作用,评估城市困难立地园林绿化骨干树种生态服务价值,是推动城市绿色、低碳、可持续发展的的重要... 目前在有限的城市空间中开展生态修复和园林绿化建设工程主要以城市困难立地为载体,科学量化城市困难立地园林绿化工程对城市生态环境的作用,评估城市困难立地园林绿化骨干树种生态服务价值,是推动城市绿色、低碳、可持续发展的的重要依据。以作为城市困难立地改造为城市大型生态公园的典型案例的上海世博文化公园为例,以东方杉(×Taxodiomera peizhongii)、广玉兰(Magnolia grandiflora)、七叶树(Aesculus chinensis)、三角枫(Acer buergerianum)、水杉(Metasequoia glyptostroboides)、乌桕(Triadica sebifera)、无患子(Sapindus saponaria)、香樟(Camphora officinarum)、银杏(Ginkgo biloba)、樱花(Prunus×yedoensis)和樟叶槭(Acer coriaceifolium)总计11个建群骨干树种为研究对象,布设微样地149个,调查骨干树种743株,并通过i-Tree模型估算出上述树种的固碳释氧与降温能力,其中降温能力通过树木潜在蒸散量和蒸腾量反映。研究结果表明:不同树种碳储量与年度碳汇量大小分布规律趋势基本一致,均与胸径大小成正比,且香樟、无患子表现最好,乌桕、樱花和七叶树次之,银杏、水杉、东方杉相对较低;而不同树种的降温增湿能力在不同径阶表现出明显差异,中小径阶三角枫、水杉表现出明显优势,中径阶无患子、银杏优势上升,大径阶乌桕表现最优。园林绿化工程建设应考虑对不同生态效益的需求,综合种植苗木的规格,筛选树种,以实现适地适树地推进园林绿化建设。 展开更多
关键词 城市困难立地 园林绿化 i-tree模型 固碳释氧 降温能力
在线阅读 下载PDF
基于i-Tree模型的滁州苏州公园植物群落及生态效益研究
6
作者 杨含 周豆豆 +4 位作者 李亚鹏 王诗娴 蔡磊 陶玉彪 盛璐 《现代园艺》 2025年第3期75-77,共3页
为提升滁州市苏州公园生态效益,加强城市绿地生态功能建设,对滁州市苏州公园进行实地调查研究,分析了苏州公园15个样地的植物群落组成。利用i-Tree模型量化研究15个样地的植物群落在吸收二氧化碳、改善空气质量和产生氧气方面的生态效... 为提升滁州市苏州公园生态效益,加强城市绿地生态功能建设,对滁州市苏州公园进行实地调查研究,分析了苏州公园15个样地的植物群落组成。利用i-Tree模型量化研究15个样地的植物群落在吸收二氧化碳、改善空气质量和产生氧气方面的生态效益。结果表明,15个样地的植物分为46科65属,共78种405株植物。其中重要值最高的是樱花,占总效益值的34%,其次是桂花,占19.8%;就每株植物的固碳量而言,最有价值的是榔榆,效益价值为69.97元;此外,在空气净化方面,栾树的单株效益最高,为506.54元,樱桃的单株效益最低,为97.81元。同时为苏州公园提出相应的群落优化策略,以提高公园植物群落生态效益,促进生态可持续发展。 展开更多
关键词 植物群落 i-tree模型 生态效益 滁州市苏州公园
在线阅读 下载PDF
基于i-Tree模型的行道树生态系统服务价值 被引量:3
7
作者 徐赛 李松 丁茗童 《中国城市林业》 2024年第3期41-49,共9页
行道树作为街道绿化系统的骨架,支撑着城市生态系统服务功能的正常运转。以武汉市临江大道中段为例,基于i-Tree构建行道树生态系统服务的综合评议模型,通过以货币值作为统一衡量标准分析演算研究地27种常见行道树及街道整体生态系统服... 行道树作为街道绿化系统的骨架,支撑着城市生态系统服务功能的正常运转。以武汉市临江大道中段为例,基于i-Tree构建行道树生态系统服务的综合评议模型,通过以货币值作为统一衡量标准分析演算研究地27种常见行道树及街道整体生态系统服务价值,旨在为行道树树种选择优化,以及街道景观与生态环境的提升提供参考。结果表明:1)在街道的植景搭配中,整体生态系统服务价值排序为:美学价值>能源节省价值>雨水截留价值>空气净化价值>生态固碳价值。2)研究地全部行道树年生态系统服务价值约131.8万元,平均1 km行道树年生态系统服务价值可达28.65万元,单株行道树年平均生态系统服务价值可达307.23元。3)行道树具有可观的生态系统服务价值,同时也存在明显种间差异,其中能源节省、美学价值和雨水截留价值在演算树种中价值量较高,空气净化和生态固碳价值量较低。因此,在街道行道树配置过程中,应将能源节省、美学价值和雨水截留价值作为首要参考因素,再结合街道属性综合考虑树种选择与应用,以构建功能全面的城市行道树生态系统服务结构,提高行道树整体的生态系统服务价值。 展开更多
关键词 行道树 i-tree模型 生态系统服务价值评估 种间对比 武汉市
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
8
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
9
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
Insights from i-Tree Eco-efficiency Assessment Management of Urban Trees in Oxford,UK
10
作者 YANG Xin LI Bowen LI Sha 《Journal of Landscape Research》 2024年第4期1-4,12,共5页
In the era of stock development following the acceleration of urbanization,the revitalization of urban green space has assumed an increasingly significant role.Consequently,the management of urban trees has emerged as... In the era of stock development following the acceleration of urbanization,the revitalization of urban green space has assumed an increasingly significant role.Consequently,the management of urban trees has emerged as a critical focus of urban governance,contributing to the enhancement of livability in human settlements.This study offers a comprehensive analysis of the urban tree management system in Oxford,UK,identifying that its primary objective is to optimize and maintain a harmonious balance between human activities and the natural environment through the implementation of high-quality planting practices.The system emphasizes enhanced management practices and establishes a robust framework for the development of targeted policies and management regulations,utilizing i-Tree eco-efficiency assessment and real-time feedback mechanisms.China’s urban tree management is in its nascent stages,and there is an urgent need for the development of urban green space.By adopting the refined management assessment methodologies employed for urban trees in Oxford,UK,it is possible to enhance the ecological value of urban trees,which represent a significant green resource within cities,and contribute to the creation of more livable urban spaces. 展开更多
关键词 Oxford Urban tree management i-tree eco-efficiency assessment INSIGHT REFERENCE
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
11
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
12
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
13
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
14
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
15
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
16
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
17
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:1
18
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model Structural deformation Impact loads Structural safety of projectile
在线阅读 下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
19
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部