期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
1
作者 席丽莹 陈焕铭 +3 位作者 郑富 高华 童洋 马治 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期128-131,共4页
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec... Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. 展开更多
关键词 Three-Dimensional Phase Field simulations of hysteresis and Butterfly Loops by the Finite Volume Method
原文传递
Low cycle fatigue behavior and cyclic deformation mechanism of 2195 Al-Li alloy at low temperatures
2
作者 Zijie Meng Cunsheng Zhang +4 位作者 Yingzhi Li Zhenyu Liu Zinan Cheng Liang Chen Guoqun Zhao 《Journal of Materials Science & Technology》 2025年第32期274-292,共19页
The low cycle fatigue(LCF)behaviors and cyclic deformation mechanisms of 2195 Al-Li alloy were inves-tigated under low temperatures(-20℃and-80℃)and different strain amplitudes(0.6%,0.7%,0.8%,and 1.0%).The LCF stress... The low cycle fatigue(LCF)behaviors and cyclic deformation mechanisms of 2195 Al-Li alloy were inves-tigated under low temperatures(-20℃and-80℃)and different strain amplitudes(0.6%,0.7%,0.8%,and 1.0%).The LCF stress responses under conditions of-20℃&0.6%and-80℃&0.6%exhibited initial cyclic hardening followed by cyclic softening.In contrast,the alloy under other LCF conditions displayed continuous cyclic softening.Notably,the alloy demonstrated reduced LCF life under conditions of-80℃and various strain amplitudes.The fatigue life model based on the total strain energy was developed and proven to be more accurate in predicting fatigue life under diverse LCF conditions.Furthermore,the combined kinematic/isotropic hardening constitutive model exhibited excellent performance in simulat-ing hysteresis loops of the alloy,with corresponding calibration errors all below 14%.Additionally,fatigue fracture surfaces under various LCF conditions consistently exhibited prominent cleavage fracture char-acteristics,and the final fracture zone at-80℃showed increased surface roughness.Finally,the cyclic softening mechanisms were found to be dependent on LCF conditions.The debonding of the interface be-tween the T1 phases and the Al matrix was identified as the primary cyclic softening mechanism under conditions of-20℃&0.6%and-80℃&0.6%.Moreover,the cyclic softening effect under-80℃&1.0%was closely associated with localized shearing of T1 phases.Under-20℃&1.0%,a more pronounced cyclic softening behavior was observed,which was primarily attributed to the continuous shearing of T1 phases. 展开更多
关键词 2195 Al-Li alloy Low temperature Low cycle fatigue behavior hysteresis loop simulation Fatigue life prediction Cyclic deformation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部