In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probabilit...In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.展开更多
We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on rev...We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.展开更多
基金supported by National High-tech Research and Development Program of China (No.2011AA7014061)
文摘In Bayesian multi-target fltering,knowledge of measurement noise variance is very important.Signifcant mismatches in noise parameters will result in biased estimates.In this paper,a new particle flter for a probability hypothesis density(PHD)flter handling unknown measurement noise variances is proposed.The approach is based on marginalizing the unknown parameters out of the posterior distribution by using variational Bayesian(VB)methods.Moreover,the sequential Monte Carlo method is used to approximate the posterior intensity considering non-linear and non-Gaussian conditions.Unlike other particle flters for this challenging class of PHD flters,the proposed method can adaptively learn the unknown and time-varying noise variances while fltering.Simulation results show that the proposed method improves estimation accuracy in terms of both the number of targets and their states.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301063 and 11571067)Science and Technology Development Foundation of Jilin (Grant No. 20160520174JH)Science and Technology Foundation of Jilin during the "13th Five-Year Plan"
文摘We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.